Tìm kiếm nhanh và chính xác hơn với google tùy chỉnh

Hiển thị các bài đăng có nhãn Thông tin di động. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn Thông tin di động. Hiển thị tất cả bài đăng

Thứ Bảy, 13 tháng 4, 2013

Tất cả những thông tin cần biết về chuẩn 4G LTE và chip RF360

4g-speeds

Có thể nói trong nhiều năm trở lại đây, công nghệ 4G đã bắt đầu trở nên phổ biến và là một thành phần không thể thiếu trên các dòng smartphone cao cấp. Mặc dù ở Việt Nam, 4G vẫn còn quá xa xỉ (theo dự kiến thì phải tầm 3-4 năm hoặc thậm chí là lâu hơn nữa nước ta mới hỗ trợ mạng 4G), thì trên thế giới, 4G đang là công nghệ mạng truyền tải dữ liệu phát triển nhanh, mạnh nhất, nó cũng đang dần phủ sóng đến nhiều quốc gia và vùng lãnh thổ. Tuy nhiên chip 4G cũng có một số nhược điểm nhất định như gây hao pin cho smartphone, đôn giá thành sản phẩm lên cao. Chính vì điều đó các nhà sản xuất smartphone bắt đầu tìm nhiều cách để tối ưu hoá việc tích hợp chip 4G ngay trên các con chip SoC nhằm khắc phục phần nào những điểm yếu trên.

Rõ hơn, trong thời gian gần đây có lẽ các bạn đã nghe nói khá nhiều đến chip Qualcomm Snapdragon 600 (trên HTC One và Optimus G Pro) hay Samsung Exynos Octa 5 (trên Galaxy S4). Tuy nhiên đó chưa phải là tất cả những chip SoC có tích hợp bộ thu phát sóng LTE trên thị trường, chúng ta còn có khá khá nhiều loại khác sẽ ra mắt trong tương lai như Tegra 4 (thế hệ sau - xuất hiện vào tháng 7 tới) và 4i từ phía NVIDIA, hay nền tảng XMM 7160 của Intel. Ngoài ra, trong thời gian tới Qualcomm cũng sẽ tung ra dòng chip Snapdragon 800 và đặc biệt là chip thu phát tín hiệu có khả năng tương thích với hầu hết các mạng viễn thông trên thế giới, mang tên RF360 - đây cũng là một điểm rất đặc biệt vì các nhà sản xuất chỉ cần đưa ra một thiết bị duy nhất trên toàn cầu mà không cần chia làm nhiều phiên bản khác nhau.

Thông tin cơ bản về 4G
4G là gì? Nó bao gồm những chuẩn mạng nào?

4G là tên gọi được IEEE (Institute of Electrical and Electronics Engineers - Học viện kỹ nghệ điện và điện tử) đặt ra nhằm phân biệt với các chuẩn mạng trước đó là 3G và 2G. Về cơ bản, 4G được hiểu là thế hệ mạng tiếp theo của 3G, là công nghệ truyền thông không dây thứ tư cho phép tốc độ tải cao nhất đạt xấp xỉ 100Mbps tại các thiết bị, phương tiện, có tính di động cao (như tàu lửa, xe hơi) và 1Gbps tại các vật thể, phương tiện, thiết bị có tính di động thấp (như người sử dụng điện thoại di động đang đứng yên một chỗ, hoặc đang đi bộ chậm). Đó cũng là những tiêu chuẩn cơ bản nhất của mạng 4G, được bộ phận thông tin vô tuyến trực thuộc Liên minh viễn thông quốc tế (có tên đầy đủ là International Telecomunications Union-Radio, gọi tắt là ITU-R) chính thức thiết lập vào tháng 3 năm 2008. Tổ chức này cũng gọi chung những chuẩn đó với cái tên IMT-Advanced (Interntional Mobile Telecomunications Advanced).

Tuy nhiên đó chưa phải là tất cả những chuẩn cơ bản nhất của 4G, theo đó ITU-R quy định một tập hợp đầy đủ các chuẩn của IMT-Advanced phải bao gồm các yêu cầu sau:
  • Dựa vào gói mạng chuyển mạch all-IP;
  • Tốc độ tải cao nhất đạt xấp xỉ 100Mbps tại các thiết bị, phương tiện, có tính di động cao (như tàu lửa, xe hơi) và 1Gbps tại các vật thể, phương tiện, thiết bị có tính di động thấp (như người sử dụng điện thoại di động đang đứng yên một chỗ, hoặc đang đi bộ chậm);
  • Có thể tự động chia sẻ và sử dụng tài nguyên mạng để hỗ trợ nhiều người dùng cùng một lúc;
  • Sử dụng các kênh có băng thông được mở rộng lên đến 5-20 MHz, tuỳ chọn đên 40 MHz;
  • Hiệu quả băng thông (là lượng thông tin có thể truyền tải qua một băng thông sẵn có trong một hệ thống giao tiếp cụ thể nào đó) cao nhất phải đạt mức 15 bit/s/Hz khi tải về, và 6,75 bit/s/Hz khi tải lên mạng;
  • Hiệu quả băng thông của hệ thống phải đạt mức 3 bit/s/mạng khi tải trang và 2,25 bit/s/mạng khi sử dụng trong nhà;
  • Truyền tải dữ liệu trên các mạng không đồng nhất phải diễn ra trơn tru, ổn định;
  • Có khả năng cung cấp dịch vụ chất lượng cao trong việc hỗ trợ đa phương tiện thế hệ tiếp theo.
Trên thế giới hiện nay có hai chuẩn mạng cho tốc độ truyền tải dữ liệu rất cao, có tên thương mại là: LTE và Mobile WiMax (thực ra chúng ta còn có HSPA+ cũng cho tốc độ băng thông rất cao, không thua kém gì LTE nhưng vì HSPA+ là khái niệm do T-Mobile tự nghĩ và đặt nên mình sẽ không đề cập đến nó). Trên thực tế, cả LTE và Mobile WiMax chưa đáp ứng đủ điều kiện để được gán mác 4G bởi cả hai chưa hội đủ các yêu cầu của IMT-Advanced như trên, và chỉ cho tốc độ dữ liệu mạng dưới 1Gbps, thế nhưng, do các nhà mạng đã đầu tư hàng tỷ đô la vào R&D và quảng cáo, nên ITU gần đây đã có chút "điều chỉnh" trong cách định nghĩa mạng 4Gđể đảm bảo những công nghệ kể trên được công nhận là 4G.

Nói tóm lại công nghệ 4G đang được thương mại hoá với hai cái tên: LTE và Mobile WiMax. Tuy nhiên, vì bài viết này mình sẽ chỉ tập trung vào các giải pháp LTE trên smartphone, LTE trên chip SoC, nên chúng ta hãy để Mobile WiMax sang một bên và chú trọng vào công nghệ 4G LTE.

Tìm hiểu về 4G LTE

9-19_blog_image_4G_logo

LTE, viết tắt của cụm từ Long-Term Evolution, được thương mại hoá trên thị trường với cái tên phổ biến là 4G LTE, là công nghệ truyền thông không dây tốc độc cao dành cho các thiết bị di động và trạm dữ liệu. Trên lý thuyết, LTE hoạt động dựa trên các công nghệ mạng GSM/EDGE và UMTS/HSPA - cho phép tăng cường hiệu năng và tốc độ tải mạng nhờ vào việc sử dụng các phương thức vô tuyến khác nhau, DSP mới (bộ xử lý tín hiệu), bộ điều chỉnh tần số, cùng với những cải tiến ở lõi mạng - đó cũng chính là mục tiêu trước mắt mà LTE đang hướng đến. Còn mục tiêu về lâu về dài, những nhà phát triển muốn LTE phải có sứ mệnh thiết kế lại và đơn giản hoá kiến trục mạng thành một hệ thống dựa trên nền IP với độ trễ truyền tải dữ liệu giảm thấp hơn nhiều lần so với chuẩn mạng 3G. Về cơ bản thì mạng LTE không thể hoạt động chung với 2G và 3G, vì vậy nó phải được sử dụng trên một số phổ mạng nhất định.

Về đặc tính kỹ thuật, dịch vụ mạng 4G LTE cho tốc độ tải xuống ở mức cao nhất đạt 300 Mbps, và tốc độ tải lên (mức cao nhất) đạt 75 Mbps với độ trễ trong việc truyền tải dữ liệu thấp hơn 5 ms. Bên cạnh đó, công nghệ 4G LTE cũng có khả năng quản lý các thiết bị di động có tốc độ di chuyển nhanh, cũng như những luồng dữ liệu đa điểm, tại nhiều vị trí khác nhau. Về băng tần hỗ trợ, tiêu chuẩn 4G LTE có thể hoạt động ở nhiều băng tần khác nhau, cụ thể, ở Bắc Mỹ, băng tần hỗ trợ là 700/800 và 1700/1900, Nam Mỹ là 2500 MHz, ở Châu Âu là 800/1800/2600 MHz, Châu Á là 1800/2600 MHz, và cuối cùng ở Úc là 1800 MHz. Chính vì vậy, một chiếc smartphone có hỗ trợ LTE ở nước này nhưng có thể sẽ không sử dụng được dịch vụ LTE ở nước khác.

Ứng dụng của 4G LTE trong việc nâng cao chất lượng thoại

VoLTE

VoLTE là dịch vụ dựa vào giao thức Internet (Internet Protocol) để truyền các gói dữ liệu và giọng nói. Bằng việc sử dụng băng thông lớn hơn và dải tần số âm 50 - 7000Hz dựa trên mạng 4G LTE, VoLTE có thể mang lại chất lượng cuộc gọi tốt hơn khoảng 40% (các nhà cung cấp thường hay gọi "HD Voice" hay "chất lượng âm thanh độ phân giải cao) so với khi gọi bằng mạng 3G vốn có tần số âm hẹp hơn, chỉ 300 - 2400Hz. Dịch vụ này còn có thể giảm thời gian kết nối giữa hai thiết bị với nhau trong chỉ 1/4 giây, nhanh hơn nhiều so với con số 5 giây của mạng 3G. Hiện có Galaxy S III LTE LG Optimus II LTE, LG Optimus Vu II là ba trong số nhiều thiết bị tương thích với VoLTE. Một số nhà mạng ở Mỹ và Hàn Quốc đã bắt đầu triển khai việc cung cấp dịch vụ VoLTE cho khác hàng.

Full-HD Voice

Full-HD Voice thực chất cũng là tính năng giúp nâng cao chất lượng cuộc gọi như VoLTE. Tuy nhiên so với VoLTE, thì Full-HD Voice hỗ trợ mạnh mẽ hơn khi nó sử dụng băng thông lớn hơn rất nhiều và dải tần số âm cũng được nới rộng ra từ 20 - 20.000 Hz dựa trên mạng 4G LTE. Bên cạnh đó, ngoài chất lượng cuộc gọi cao, Full-HD Voice còn giảm thiểu đến mức tối đa thời gian kết nối giữa hai thiết bị. Hiện Full-HD Voice vẫn chưa thực sự phổ biến, và có lẽ chúng ta phải đợi thêm một thời gian nữa mới có thể thấy nó xuất hiện rộng rãi trên các thiết bị di động. Một nhược điểm nho nhỏ của Full-HD Voice là nó yêu cầu người gọi và người nhận cuộc gọi cả hai phải sử dụng smartphone có hỗ trợ tính năng đó mới có thể sử dụng được.

Chip 4G LTE tích hợp vào SoC

Thông thường Snapdragon S4, Snapdragon 600, Tegra 3, Tegra 4 thế hệ cũ, là các SoC có vai trò quản lý các tác vụ của toàn bộ hệ thống, còn việc kết nối đến mạng 4G LTE sẽ do modem LTE (nằm độc lập với SoC) đảm nhiệm. Tuy nhiên, việc SoC và chip LTE nằm hai vị trí khác nhau đã dẫn đến rất nhiều nhược điểm làm ảnh hưởng không tốt đến smartphone/tablet như: mức tiêu hao năng lượng nhiều hơn, diện tích bên trong phần cứng của máy bị thu hẹp, hiệu năng của hệ thống bị giảm, dẫn đến việc xử lý của máy cũng trở nên chậm chạp hơn. Thấy rõ được những điểm yếu như vậy, các hãng sản xuất chip di động như Qualcomm, Samsung, Intel hay Nvidia bắt đầu tính đến phương án tích hợp thẳng modem 3G/4G LTE vào SoC nhằm khắc phục tất cả các vấn đề trên.

Và kết quả là gì? Chúng ta đã được chứng kiến sự ra đời của những dòng chip có sẵn LTE bên trong như Snapdragon S4 Pro, Snapdragon 800 từ Qualcomm, Tegra 4 thế hệ mới, Tegra 4i của Nvidia, nền tảng XMM 7160 do Intel sản xuất, và mới đây nhất là Samsung Exynos Octa 5 trên Galaxy S4. Tất cả chúng đều có những lợi ích nhất định: mạnh mẽ hơn, lượng điện năng tiêu thụ được giảm xuống đáng kể, diện tích bên trong máy tăng lên tạo điều kiện cho nhà sản xuất có thể mở rộng dung lượng pin.

Rõ ràng việc tích hợp thẳng chip 4G LTE vào SoC mang lại rất nhiều điểm mạnh, thế nhưng vẫn còn đó một nhược điểm cố hữu trên chính modem 4G LTE. Cụ thể hơn nó là gì? Quay trở lại đặc tính của LTE, mình có đề cập đến một điều: một chiếc smartphone có hỗ trợ LTE ở nước này nhưng có thể sẽ không sử dụng được dịch vụ LTE ở nước khác. Đây chính là vấn đề của chip 4G LTE trên các thiế bị di động hiện nay. Điều này luôn khiến các nhà sản xuất smartphone cảm thấy đau đầu bởi mỗi khi họ tung ra một dòng sản phẩm mới, họ buộc phải tạo ra từ 20 phiên bản khác nhau của cùng một chiếc smartphone nhằm hỗ trợ tối đa các dịch vụ mạng 4G LTE ở từng nước.

Quả thật nó không hề dễ chịu chút nào, nhưng có vẻ như trong thời gian tới nỗi âu lo đó sẽ biến mất khi trong thời gian vừa qua, hãng sản xuất chip Qualcomm đã chính thức giới thiệu đến thế giới RF360 - một con chip thu phát tín hiệu có khả năng tương thích với hầu hết các mạng viễn thông trên thế giới.

Tất cả những điều bạn cần biết về RF360

Thông tin cơ bản


RF360 là thiết bị có thể hoạt động với chuẩn LTE-FDD (dùng bởi nhà mạng Verizon, AT&T của Mỹ), LTE-TDD, WCDMA (đây là mạng 3G ở Việt Nam), EV-DO, CDMA 1x, TD-SCDMA và cả GSM / EDGE (2G). Chính vì thế, nó có thể xóa bỏ rào chắn giữa hơn 40 băng tần mạng di động khác nhau trên toàn cầu. Qualcomm còn tích hợp cho RF360 bộ hiệu chỉnh năng lượng đầu tiên dành cho thiết bị 3G/4G, bộ chỉnh sóng ăng-ten động (tần số từ 700-2700MHz), "gói vô tuyến 3D" đầu tiên (bao gồm bộ chuyển mạch ăng-ten và bộ khuếch đại nguồn, hãng gọi là RF POP). Kết quả là con chip sẽ giảm lượng điện tiêu thụ xuống. RF360 cũng tiết kiệm không gian hơn 50% so với những công nghệ hiện tại, các nhà sản xuất thì cắt giảm được chi phí sản xuất.

Vậy câu hỏi được đặt ra ở đây là làm thế nào để RF360 lại có thể "xóa bỏ rào chắn giữa hơn 40 băng tần mạng di động khác nhau trên toàn cầu"? Để có được câu trả lời chúng ta cần đi sâu một tí vào công nghệ mà Qualcomm sử dụng trên RF360.

[IMG]

Theo đó, Qualcomm đã tạo ra một con chip 3D siêu nhỏ tích hợp sâu vào RF360, chú chip 3D này sử dụng một bộ chỉnh anten riêng biệt, có cấu trúc vô cùng phức tạp, để có thể bắt được sóng của 40 băng tần LTE khác nhau nằm trong dải tần số từ 600 MHz đến 2,7 GHz - rộng hơn rất nhiều lần so với phổ mạng 4G LTE hiện nay. Tuy nhiên để tạo ra một chiếc smartphone LTE "toàn cầu" theo đúng nghĩa đen, chip 3D trên RF360 chưa phải là yếu tố cốt lõi duy nhất. Qualcomm cho biết những thành phần khác trong chuỗi RF như ăng ten cần phải có những nâng cấp nhất định mới có thể tương thích tốt với chip 3D trong RF360. Điều đáng tiếc là đến thời điểm hiện tại, các hãng sản xuất anten thông minh như SkyCross hay Ethertronics mặc dù đã tạo ra nhiều loại anten có khả năng hỗ trợ đến hàng tá băng tần, nhưng con số đó so với 40 băng tần mà chip RF360 hỗ trợ là quá ít.

Ngoài chip 3D, RF360 cũng được cấu thành từ rất nhiều thành phần kỹ thuật tiên tiến, sử dụng các công nghệ cao cấp hơn hẳn so với đại đa số dòng chip LTE trên thị trường, cụ thể như sau:

screen-shot-2013-02-21-at-12-37-51-pm
  • Bộ chuyển đổi ăng-ten linh động (Dynamic Antenna Matching Tuner - QFE15xx): là công nghệ ăng-ten tích hợp có khả năng cấu hình lại và được tích hợp modem đầu tiên trên thế giới cho phép mở rộng tầm hoạt động của ăng-ten trên các băng tần 2G/3G/4G LTE, với dải tần số trải dài từ 700-2700 MHz. Kỹ thuật này, kết hợp với modem kiểm soát cùng các cảm biến đầu vào, sẽ giúp tăng hiệu năng của ăng-ten, giữ kết nối ổn định khi thiết bị gặp vật cản như bàn tay của người dùng.
  • Envelope Power Tracker (QFE11xx): Đây là công nghệ theo dõi sóng đường bao có tích hợp modem đầu tiên, được thiết kế dành cho các thiết bị di động có hỗ trợ 3G/4G LTE. Về cơ bản thì con chip này có nhiệm vụ làm giảm nhiệt và làm giàm 30% mức độ tiêu hao năng lượng của hệ thống sóng vô tuyến RF (Radio-Frequency), phụ thuộc vào cách thức hoạt động của từng nhà mạng. Bằng cách giảm thiểu năng lượng điện tiêu hao, và tăng cường khả năng tản nhiệt, QFE11xx cho phép các hãng OEMs tạo ra các smartphone với độ dày mỏng, ít nóng hơn và tiết kiệm pin hơn.
  • Bộ khuếch đại năng lượng tích hợp / bộ chuyển đổi ăng-ten (QFE23xx): đây là con chip đầu tiên được trang bị bộ khuếch đại năng lượng CMOS và bộ chuyển đổi ăng-ten hỗ trợ nhiều băng tần ở các chuẩn mạng 2G, 3G và 4G LTE. Giải pháp này là vô cùng sáng tạo bởi nó cung cấp các chức năng chưa từng thấy trên một con chip đơn lẻ, với bảng mạch PCB nhỏ, bộ định tuyến được đơn giản hoá, và là một trong những bộ chuyển đổi ăng-ten/ khuếch đại năng lượng nhỏ nhất.
  • RF POP (QFE27xx): Đây là gói giải pháp sóng vô tuyến 3D đầu tiên, có tích hợp chip QFE23xx đa chế độ, bộ chuyển đổi ăng-ten và bộ khuếch đại năng lượng đa băng tần, với tất cả bộ lọc sóng âm phẳng (SAW) và bộ song công ăng-ten. Qualcomm cho biết QFE27xx được thiết kế để có thể dễ dàng hoán đổi, cụ thể QFE27xx sẽ cho phép các nhà OEMs thay đổi cấu hình nền để hỗ trợ tổ hợp các băng tần toàn cầu hoặc tại một vùng/miền nhất định. QFE27xx RF POP cũng cho phép nhiều băng tần, nhiều chế độ tích hợp sâu, và đặc biệt với gói giải pháp đầu cuối RF sẽ biến các smartphone sử dụng chip RF360 trở thành chiếc smartphone LTE toàn cầu thực thụ.
Nguồn bài viết:http://www.tinhte.vn

Thứ Ba, 19 tháng 6, 2012

Điện thoại SIP

Điện thoại SIP giống như Điện thoại VoIP hoặc điện thoại mềm. Đây là các điện thoại cho phép thực hiện các cuộc gọi bằng cách sử dụng công nghệ VoIP (giao thức truyền giọng nói qua Internet).
Có hai loại điện thoại SIP. Loại thứ nhất là điện thoại SIP chạy trên phần cứng giống như điện thoại để bàn nhưng có thể nhận và thực hiện các cuộc gọi qua internet thay vì hệ thống PSTN truyền thống.
Điện thoại SIP cũng có thể chạy trên phần mềm. Các tùy chọn này cho phép mọi máy tính được sử dụng như điện thoại qua tai nghe có micrô và/hoặc card âm thanh. Ngoài ra, cần phải kết nối băng thông rộng và kết nối với nhà cung cấp VOIP hoặc máy chủ SIP.
Hệ thống điện thoại 3CX nền Windows có thể được sử dụng với Điện thoại SIP chạy phần cứng thông dụng nhất. Nó cũng tương thích với Điện thoại SIP chạy phần mềm hoàn toàn MIỄN PHÍ vốn hoạt động như một Ứng dụng VoIP cho hệ thống điện thoại 3CX.


Thứ Hai, 18 tháng 6, 2012

Các dịch vụ chat tích hợp thoại

Các dịch vụ chat tích hợp thoại

Nói đến cách dịch vụ này thì có hơi hướng của các thiết bị truyền thống, dùng phổ biến trên pc, laptop.
Ở Việt Nam thì phải nói đến đầu tiên là các dịch vụ yahoo messenger và skype.
Yahoo thì quá thông dụng rồi, dù giờ tập đoàn Yahoo đi xuống nhiều nhưng vì lượng người sử dụng quá lớn, khi gửi nick chat, không nói là nick mạng nào thì người Việt Nam nghiễm nhiên hiểu đó là nick yahoo. Dịch vụ này cũng có hỗ trợ thoại tuy nhiên đứng ở mức độ người dùng mình có mấy nhận xét sau đây:
  • Tính năng: nhiều
  • Giao diện: tiện lợi, cũng khá đẹp
  • Độ ổn định : dạo gần đây rất hay bị lỗi send file, độ ổn định thì bình thường nhưng nói chung là chưa hài lòng lắm
  • Chất lượng thoại : không tốt, muốn tiện thì dùng luôn nhưng muốn đảm bảo thì hãy bảo người bên kia chuyển sang skype khi muốn gọi, được cái là giờ cũng hỗ trợ di động để thoại
Dịch vụ chat thứ 2 chính là Skype. Nói đến Skype thì người ta nghĩ ngay đến dịch vụ voice chat chất lượng tốt, và quả thực là nó tốt thật nếu so sánh với yahoo, tuy nhiên người sử dụng skype thì ít, 2 tài khoản yahoo và skype không add nick được nhau nên muốn liên lạc nhiều người và tiện thì cứ phải yahoo. Mình gạch ra vài nhận xét :
  • Tính năng khá là tương đương với yahoo
  • Giao diện: đẹp hơn, theo nhận xét của mình nhưng emoticon thì xấu hơn yahoo
  • Độ ổn định : ít dùng hơn yahoo, chủ yếu chỉ khi chat nhưng mình thấy nó khá ổn định
  • Chất lượng thoại: rất tốt, hiện đã hỗ trợ video chat độ phân giải HD .

Các dịch vụ gọi miễn phí qua di động, máy tính bảng

Mình dùng điện thoại android và android thì hỗ trợ cả 2 dịch vụ chat và video trên, với các máy tính bảng android có mic, wifi (hoặc 3g, 4g) thì có thể thoại được, và nếu có camera trước thì video chat như trên máy tính luôn, rất tiện lợi, tuy nhiên lại có 1 số hình thức tiện lợi mới được sinh ra.

Whatsapp, Viber là 2 ứng dụng tiêu biểu. Với đặc điểm là cả máy nghe lẫn máy gọi đều phải kết nối mạng thì mới có tín hiệu liên lạc, tuy nhiên với giá cước internet di động ngày càng rẻ, thiết bị smartphone ngày càng nhiều thì việc 2 bên có 2 thiết bị di động luôn kết nối net là chuyện ngày càng phổ biến, tuy nhiên 2 cái này hơn các dịch vụ truyền thống ở chỗ sau khi kích hoạt số điện thoại mình thì nick mình chính là nick viber, whatsapp luôn, không cần đăng nhập, không cần password ... có khi sau này thay thế dịch vụ gọi thường ấy chứ.


Thoại VOIP trong doanh nghiệp
VOIP là hình thức thoại thông qua mạng nội bộ, được ứng dụng trong doanh nghiệp, blog cũng có 1 số bài nên mình không trình bày sâu, đặc điểm thì cũng giống mấy cái trên thôi, đều dùng đường truyền net nhưng đây là mạng nội bộ -> truyền tốc độ cao, ổn định hơn, chắc là bảo mật hơn và thiết bị phải mua riêng.

Chủ Nhật, 17 tháng 6, 2012

VoIP

VoIP (viết tắt của Voice over Internet Protocol, nghĩa là Truyền giọng nói trên giao thức IP) là công nghệ truyền tiếng nói của con người (thoại) qua mạng thông tin sử dụng bộ giao thức TCP/IP. Nó sử dụng các gói dữ liệu IP (trên mạng LAN, WAN, Internet) với thông tin được truyền tải là mã hoá của âm thanh.
Công nghệ này bản chất là dựa trên chuyển mạch gói, nhằm thay thế công nghệ truyền thoại cũ dùng chuyển mạch kênh. Nó nén (ghép) nhiều kênh thoại trên một đường truyền tín hiệu, và những tín hiệu này được truyền qua mạng Internet, vì thế có thể giảm giá thành.
Để thực hiện việc này, điện thoại IP, thường được tích hợp sẵn các nghi thức báo hiệu chuẩn như SIP hay H.323, kết nối tới một tổng đài IP (IP PBX) của doanh nghiệp hay của nhà cung cấp dịch vụ. Điện thoại IP có thể là điện thoại thông thường (chỉ khác là thay vì nối với mạng điện thoại qua đường dây giao tiếp RJ11 thì điện thoại IP nối trực tiếp vào mạng LAN qua cáp Ethernet, giao tiếp RJ45) hoặc phần mềm thoại (soft-phone) cài trên máy tính.

VoIP tại Việt Nam

Các dịch vụ như gọi 171 (VNPT), 177 (SPT), 178 (Viettel), 175 (VISHIPEL) ở Việt Nam đều là các dịch vụ sử dụng phương thức này. Tuy nhiên VoIP cũng có những nhược điểm của nó. Đó là chất lượng âm thanh chưa được đảm bảo, vẫn còn tình trạng trễ tiếng. Một số công ty cung cấp VoIP tại Việt Nam đã cố gắng cung cấp cho khách hàng chất lượng thoại VoIP ngày càng tốt hơn.
Ngày 29/09/2010 Công ty Điện toán và Truyền số liệu VDC – Thành viên của Tập đoàn Bưu chính Viễn thông Việt Nam (VNPT) đã tổ chức buổi lễ khai trương dịch vụ thẻ gọi điện thoại trong nước, quốc tế mới với tính năng roaming tại nước ngoài – Fone1718.
Dịch vụ đáp ứng được nhiều tiện ích tối đa cho người dùng với nhiều tính năng vượt trội mà từ trước đến nay chưa từng có tại Việt Nam.
Các giao thức dùng trong VoIP: sip, mgcp, h323.
Giao thức H323 không chỉ được dùng trong truyền tiếng nói mà còn được dùng để truyền video trên nền mạng IP (giải pháp video conference)

Avaya VoIP Phone 4625

1140E VoIP Phone

1535 Video over IP Phone

Phần mềm ứng dụng VoIP

Ứng dụng VoIP sử dụng trên máy tính cá nhân đầu tiên được phát triển năm 1995 bởi một công ty của Israel có tên là VocalTel. Ứng dụng VoIP đầu tiên này nói chung còn gặp phải nhiều vấn đề như: trễ lớn , chất lượng thoại còn thấp và không tương thích với các mạng ngoài. Mặc dù vậy, sự ra đời của nó cũng là một bước đột phá quan trọng. Kể từ đó đến nay, cùng với sự phát triển của công nghệ cáp quang với các đường truyền băng rộng công nghệ VoIP có nhiều thuận lợi để phát triển trở thành phương thức thoại tốt, chi phí thấp hơn rất nhiều so với phương thức thoại truyền thống.

Thứ Tư, 13 tháng 6, 2012

Số IMEI

IMEI - Viết tắt của tiếng Anh International Mobile Equipment Identity (tạm dịch là "Số nhận dạng thiết bị di động trên toàn thế giới"), mã số nhận dạng quốc tế của từng điện thoại di động.

Đặc điểm

Đặc diểm chung

Số IMEI là một chuỗi số duy nhất được gán duy nhất cho mỗi máy GSM hay máy UMTS. Thường dãy số này được in trên tem máy nằm phía dưới Pin hay có thể bấm *#06# sẽ hiện ra trên màn hình. Số IMEI thường được sử dụng trong mạng GSM để nhận dạng sự hợp pháp của máy đầu cuối nhờ đó mạng có thể không cho các máy ăn cắp có thể gọi. Ví dụ nếu một máy điện thoại bị mất cắp, người chủ có thể gọi tới tổng đài yêu cầu tổng đài chặn máy điện thoại sử dụng số IMEI này. Do đó máy này sẽ không thể gọi được cho dù có thay thế SIM card khác.

So sánh với ESN

Không giống như số ESN trong mạng CDMA hay các mạng khác. Số IMEI chỉ dùng để nhận dạng thiết bị đầu cuối, nó không liên quan gì đến thuê bao. Vì trong mạng GSM thuê bao được nhận dạng bằng chuỗi số IMSI chuỗi này chứa trong SIM. Tuy nhiên có nhiều mạng họ có thể kích hoạt chức năng vừa xác định IMSI vừa xác định bằng IMEI.
Không giống như số ESN của mạng CDMA và các mạng không dây khác, số IMEI chỉ được dùng để xác định thiết bị, và không có mối liên kết thường trực hoặc bán thường trực với phía thuê bao. Thay vào đó, phía thuê bao được xác định thông qua việc truyền phát một số IMSI, số này được lưu giữ trên một thẻ SIM, về nguyên tắc có thể được truyền tới bất kỳ thiết bị di động cầm tay nào. Tuy nhiên, nhiều tính năng mạng và bảo mật có thể được kích hoạt thông qua việc nắm rõ thiết bị hiện do bên thuê bao sử dụng.

Cấu trúc của số IMEI

Số IMEI là một dãy số gồm 15 số nó chứa thông tin xuất xứ, Model và số serial của máy. Model và xuất xứ bao gồm 8 số trong phần đầu được hiểu là TAC (viết tắt của Type Allocation Code: Mã model và xuất xứ). Các phần còn lại của số IMEI được định nghĩa bởi nhà sản xuất, và cuối cùng là số Luhn Check Digit số này không gửi đi tới mạng.

Cấu trúc cũ

Trước năm 2002 thì số IMEI có dạng như sau :
AAAAAA-BB-CCCCCC-D (TAC – FAC – SNR – D ).
Trong đó thì TAC có độ dài 6 số theo sau đó là 2 số cho biết máy được ráp ở đâu gọi là (FAC: Final Assembly Code) tùy theo đó nhà sản xuất sẽ ghi các số này để cho biết máy được ráp ở nước nào. Và sau cùng cũng là chuỗi số serial của máy do nhà sản xuất quy định.
Ví dụ 352099-00-176148-1 cho biết các thông số sau : TAC: 352099 nó được đưa ra bởi BABT và theo số 2099.
FAC: 00 số này là thời điểm chờ chuyển từ số theo định dạng cũ sang số mới (vì sao là 00 sẽ được mô tả chi tiết sau).
SNR: 176148
CD: 1 Có nghĩa là GSM Phase 2 hay cao hơn.
Định dạng sẽ thay đổi bắt đầu từ 1 tháng 4 năm 2004 khi mà số FAC: Final Assembly Code chuyển từ định dạng cũ sang định dạng theo kiểu 8 số theo định dạng TAC: Type Allocation Code. Thì bắt đầu từ ngày một tháng một năm 2003 cho tới ngày đổi thoàn bộ số FAC sẽ là 00.

Kể từ 2004

Kể từ năm 2004 định dạng của số IMEI sẽ theo chuẩn sau : AABBBBBB-CCCCCC-D (Có thể được viết liền AABBBBBBCCCCCCD). Trong đó:
  • AA Là số Reporting Body Identifier, nó chỉ ra rằng nhóm GSMA thuộc nhóm nào xem bảng danh sách số Reporting Body Identifier ở phía dưới.
  • BBBBBB Là phần còn lại của chuỗi TAC.
  • CCCCCC Là số serial của từng máy do nhà sản xuất quy định.
  • D Là số cuối cùng được tạo ra từ các số trước theo luật Luhn check digit hoặc có thể là số 0.

Sử dụng IMEI để tra cứu thông tin máy điện thoại di động

Các dạng thức

Tùy thuộc vào năm sản xuất mà số IMEI (International Mobile Equipment Identity) có những dạng khác nhau, nhưng tựu trung thì có 2 dạng phổ biến:
  • aabbbb-cc-dddddd-e: dạng này là dành cho những máy sản xuất trước 1/4/2004
trong đó dãy aabbbb: TAC: Type approval code
cc: FAC: Final assembly code
dddddd: SNR: Serial number
e: SP: check digit (thường là số 0)
phần aa: nước sản xuất
phần cc: số hiệu của nhà sản xuất
ví dụ 01,02 = AEG ---- 60 = Alcatel
07,40 = Motorola ----- 61 = Ericsson
10,20 = Nokia ---- 65 = AEG
30 =Ericsson ----- 70 = Sagem
40,41,44 =Siemens ---- 75 = Dancall
50 =Bosch ---- 80 = Philips
51 =Sony, Siemens, Ericsson ----- 85 = Panasonic
Tuy nhiên, kể từ 1/1/2003 phần cc này đã được đồng loạt set về 00
  • xxxxxxxx-dddddd-e: dạng này là dành cho những máy sx sau thời điểm trên
trong đó xxxxxxxx: Type Allocation Code (cũng viết là TAC), và 2 chữ xx đầu cũng là ký hiệu nước sản xuất (tất nhiên bây giờ nhiều máy cũng kg ghi số IMEI theo kiểu có dấu cách như vậy mà thường ghi liền thành 1 dãy 15 số).
2 chữ số đầu tiên cho biết xuất xứ của nước sản xuất (country of origin). Nó vốn căn cứ trên mã điện thoại của mỗi quốc gia, nhưng nói chung là chỉ ở mức tương đối.
2 chữ số đầu tiên trong dãy số IMEI có tên gọi chính thức là Reporting Body Identifier. 2 chữ số này biểu thị tên tổ chức đã cấp số đăng ký cho phone. Và những con số này thường dựa trên mã quốc gia của tổ chức đó. Ví dụ: 35: British Approvals Board of Telecommunications (BABT).
  • Ví dụ: 01: USA; 35: UK; 33: Pháp; 45: Đan Mạch; 49, 50, 51: Đức v.v.
Cuối cùng, nếu bạn muốn phân tích những thông tin ẩn chứa trong IMEI, hãy vào đây và nhập số IMEI để khám phá nhiều điều thú vị.
Với các số IMEI mới chúng ta không thể dựa vào số IMEI để biết nước s/x điện thoại được. Vì dải số IMEI giờ không còn được cấp phát theo Quốc Gia nữa, mà được cấp phát theo tập đoàn/ CT s/x Điện thoại, và như chúng ta biết thì các tập đoàn s/x ĐT lớn đều đặt nhà máy s/x tại rất nhiều Quốc Gia, vì vậy các bạn check số IMEI mới, sẽ chỉ thấy - Made by Nokia, SE, Moto ...etc...

Ví dụ

Sau đây là đường dẫn hữu ích cho bạn - Phân tích 1 số IMEI xem thử thông tin của máy bạn như thế nào: http://www.numberingplans.com/?page=analysis&sub=imeinr
Bạn truy cập vào và nhập số IMEI sau đó sẽ biết được thông tin của máy mình ví dụ :
357308-00-0140802
Information on IMEI 357308000140802
Mobile equipment brand / model O2 XDA mini
GSM Implementation Phase 2/2+
Country of Approval United Kingdom

Thứ Năm, 3 tháng 5, 2012

Chuyển giao

Trong thông tin di động, chuyển giao là quá trình chuyển một kết nối thoại (cuộc gọi) hoặc kết nối dữ liệu từ kênh này sang kênh khác. Cell là vùng phủ sóng của một trạm phát sóng hay một sector của một trạm phát sóng.
Chuyển giao xảy ra trong nhiều trường hợp, sau đây là một số trường hợp:
  • Thuê bao di chuyển từ cell này sang cell khác. Khi chuyển giao được thực hiện thì kết nối đó không bị kết thúc khi thuê bao di chuyển ra khỏi một cell nào đấy.
  • Dung lượng kết nối của một cell (A) đã dùng hết, thì kết nối của những thuê bao nào nằm trong vùng giao nhau của cell này với một cell khác (B) sẽ được chuyển sang cell đó (B) nhằm giảm bớt kết nối ở cell A để các thuê bao khác có thể thực hiện cuộc gọi.
Chuyển giao intra-cell là khi kết nối được chuyển từ kênh này (có thể bị nhiễu,...) sang kênh khác trong cùng một cell. Inter-cell là chuyển giao giữa các cell.
Hai loại chuyển giao cơ bản là:
  • Chuyển giao cứng: kênh của một kết nối bị ngắt trước khi kênh mới được thiết lập.
  • Chuyển giao mềm: kênh mới được thiết lập trước khi kênh cũ bị ngắt.

Chuyển giao rất quan trọng trong di động vì không có chuyển giao thì làm gì còn "di động" nữa, các điện thoại chỉ lanh quanh 1 trạm và khi di chuyển sang trạm khác thì bị đứt kết nối.
Bổ xung thêm 1 loại chuyển giao nữa là chuyển giao mềm hơn (giữa các cluster của 1 tế bào) UE được kết nối đến ít nhất là hai đoạn ô của cùng một trạm.

Ngoài ra thì người ta còn phân ra nhiều loại như
Chuyển giao trong nội hệ thống (phân nhỏ nữa thì còn có cùng tần số, khác tần số), chuyển giao giữa các hệ thống khác nhau ..

Thứ Hai, 30 tháng 4, 2012

FOMA

FOMA (viết tắt của Freedom of Mobile Multimedia Access) là thương hiệu của dịch vụ viễn thông 3G dựa trên công nghệ W-CDMA đang được phát triển bởi nhà cung cấp dịch vụ viễn thông di động Nhật Bản NTT DoCoMo. Nó được xây dựng theo Hệ thống viễn thông di động toàn cầu (UMTS) và là dịch vụ điện thoại di động mang tính thương mại đầu tiên trên thế giới ứng dụng truyền thông di động 3G.
NTT DoCoMo cũng cung cấp dịch vụ HSPA gọi là FOMA High-Speed (Nhật: FOMAハイスピード?), trong đó tốc độ đường truyền tải xuống lên đến 7,2 Mbit/giây tốc độ tải lên lên đến 5,7 Mbit/giây

Trước đây mình cứ nhầm là HSPA ( gồm HSDPA và HSUPA) chỉ hỗ trợ cho WCDMA UMTS, giờ mới biết FOMA cũng được hỗ trợ

Thứ Sáu, 9 tháng 3, 2012

3GPP LTE: thách thức thật sự của WiMAX

Cuộc chiến giữa hai công nghệ WiMAX (Worldwide Interoperability for Microwave Access) và 3G LTE (Long Term Evolution) dường như chưa đến hồi kết thúc. Mỗi một công nghệ có những thế mạnh và những điểm yếu riêng. Chúng đều là hai ứng cử viên sáng giá cho mạng di động thế hệ thứ 4. Trong bài viết này, trước hết quá trình phát triển của hai công nghệ sẽ được tóm lược, kế đó tính cạnh tranh của hai công nghệ này sẽ được lần lượt xem xét ở khía cạnh thuần túy kỹ thuật cũng như khía cạnh chiến lược kinh tế.

Đôi nét về WiMAX

WiMAX là tên thông dụng thường dùng để chỉ công nghệ truy nhập không dây băng rộng sử dụng giao diện của chuẩn IEEE 802.16. Gần đầy WiMAX đã được ITU-R chính thức công nhận là một chuẩn 3G trong họ IMT-2000. Điều này có ý nghĩa rất lớn đối với tương lai của WiMAX vì nó sẽ thúc đẩy sự triển khai rộng khắp của WiMAX, đặc biệt trên băng tần 2.5-2.69GHz, để cung cấp dịch vụ Internet băng rộng, bao hàm cả VoIP và nhiều dịch vụ thông qua kết nối Internet.
Trong họ IEEE 802.16 nổi bật nhất là chuẩn 802.16e-2005 với khả năng đáp ứng cả các ứng dụng cố định cũng như các dịch vụ di động, nên còn được gọi là WiMAX di động. Chuẩn này đã và đang được thử nghiệm ở nhiều nước. Hiện tại, WiMAX di động "Wave 2" dùng 2 ăng-ten phát và 2 ăng-ten thu đã cho tốc độ tối đa tầm 75Mbps. Bên cạnh đó, nhóm làm việc IEEE 802.16 đang phát triển phiên bản 802.16j trong đó nghiên cứu triển khai các trạm relay (tiếp sức) bên cạnh các trạm phát sóng BS để sử dụng kênh truyền một cách hiệu quả, tăng tốc độ truyền dẫn và mở rộng vùng phủ sóng.
Nhóm IEEE 802.16 cũng đang nghiên cứu phiên bản 802.16m với mục đích đẩy tốc độ dữ liệu của WiMAX lên hơn nữa trong khi vẫn tương thích với WiMAX cố định và di động đã và đang được triển khai. Phiên bản này theo dự kiến sẽ được hoàn thiện vào cuối năm 2009, như là một bước tiến để vượt trội hơn 3G LTE. Phiên bản 802.16m sẽ vẫn dựa trên kỹ thuật ăng-ten MIMO trên nền công nghệ đa truy nhập OFDMA với số lượng ăngten phát và thu nhiều hơn WiMAX di động « Wave 2 ». 802.16m trang bị 4 ăng-ten phát và 4 ăng-ten thu sẽ có thể đẩy tốc độ truyền lên lớn hơn 350Mbps. Theo dự kiến, WiMAX Release 2 với sự hoàn thiện của 802.16m sẽ hoàn thành vào cuối năm 2009 và có thể bắt đầu triển khai dịch vụ từ 2010 (xem hình 1).

Hình 1 : Sơ đồ phát triển của công nghệ WiMAX
Nói tới WiMax , người ta có thể nghĩ tới rất nhiều giải pháp thay thế mà công nghệ này có thể mang lại. Đó chính là khả năng thay thế đường xDSL giúp tiếp cận nhanh hơn các đối tượng người dùng băng rộng mà không cần phải đầu tư lớn. Đặc biệt WiMAX rất hữu ích để cung cấp dịch vụ băng thông rộng ở những vùng xa xôi mà giải pháp ADSL hoặc cáp quang là rất tốn kém. Bên cạnh các dịch vụ cố định, WiMAX còn cung ứng các dịch vụ di động giống như những dịch vụ của mạng 3G : thoại VoIP, internet di động, TV di động…. Trong năm tới 2008, các thiết bị di động mà hiện nay được tích hợp WiFi sẽ được tích hợp WiMAX. Đối với các thiết bị cũ sẽ cần phải trang bị thêm thẻ PCMCIA WiMAX, hoặc usb WiMAX để có thể kết nối băng rộng của WiMAX.

Đôi nét về 3G LTE

3G LTE là một công nghệ di động mới đang được phát triển và chuẩn hóa bởi 3GPP (The Third Generation Partnership Project). Dự án được bắt đầu từ cuối năm 2004, nhằm đảm bảo tính cạnh tranh của mạng 3G trong vòng 10 năm tới. Mặc dù 3GPP đã phát triển HSPA để tăng tốc độ dữ liệu (tốc độ tối đa có thể là 14.4 Mbps), nhưng 3G HSPA vẫn không thể cung cấp tốt những dịch vụ như video, TV di động.... Đứng trước sự ra đời và cạnh tranh của WiMAX cũng như nhu cầu cung cấp dịch vụ băng thông rộng ngày càng cao, 3GPP buộc phải phát triển 3G LTE để có thể đứng vững.
3G LTE hứa hẹn sẽ cho tốc độ dữ liệu truyền trên kênh xuống (downlink) lớn hơn 100 Mbps và trên kênh lên (uplink) lớn hơn 50 Mbps. Giống như WiMAX, 3G LTE dựa trên nền gói IP do đó sẽ không còn chuyển mạch kênh như trong các thế hệ 2G, 3G hiện tại. Kiến trúc mạng của 3G LTE sẽ đơn giản hơn so với mạng 3G hiện thời. Tuy nhiên mạng 3G LTE vẫn có thể tích hợp một cách dễ dàng với mạng 3G và 2G. Điều này hết sức quan trọng cho nhà cung cấp mạng triển khai 3G LTE mà không cần thay đổi toàn bộ cơ sở hạ tầng mạng đã có. 3G LTE sử dụng công nghệ đa truy cập OFDMA cho kênh xuống và SC-FDMA cho kênh lên và nó vẫn dựa trên công nghệ ăng-ten MIMO để đạt tốc độ truyền dự liệu cao như mong muốn.

Hình 2: Kế hoạch chuẩn hóa 3G LTE
Những thử nghiệm gần đây đã cho thấy rằng đối thủ của công nghệ di động WiMAX – 3G LTE đạt được những kết quả khả quan như dự kiến. Cho dù được ra đời muộn hơn rất nhiều so với WiMAX, nhưng với những kết quả bước đầu mang tính hứa hẹn công nghệ LTE mới này vẫn có tính cạnh tranh cao trong tương lai. Gần đây trong dịp triễn lãm di động châu Á (Mobile Asia Congress), hiệp hội GSM (GSM Association – GSMA), hiệp hội của nhiều nhà cung cấp mạng trên thế giới, cho biết sẽ chọn công nghệ LTE như là một chuẩn di động tương lai, công nghệ tiếp nối của HSPA. Thông báo này đã đẩy LTE tiến một bước trên cuộc cạnh tranh giữa LTE với WiMAX và cả công nghệ UMB (Ultra Mobile Broadband) của Qualcom. GSMA ủng hộ các công ty và các tổ chức đang phát triển công nghệ LTE. Tuy nhiên việc chuẩn hóa công nghệ LTE theo dự kiến thì chưa thể kết thúc trước 2010 (xem hình 2).

So sánh công nghệ kỹ thuật dùng trong WiMAX và 3G LTE


Bảng 1 : So sánh đặc điểm nổi bật của WiMAX và 3G LTE
Hiện tại WiMAX di động Rel 1 (802.16e) đã có đủ sức cạnh tranh về mặt công nghệ so với 3G LTE. Tuy nhiên, nếu nhìn kỹ trên bảng so sánh thì ta thấy công nghệ 3G LTE vẫn vượt hơn 802.16e về cả tính năng di động và tốc độ truyền dự liệu. Song, đổi với những nhà phát triển WiMAX thì họ không chấp nhận so sánh 3G LTE với 802.16e mà phải là 802.16m (cột thứ 3 trên bảng 1). Nhìn vào đây ta thấy WiMAX di động Rel 2 hứa hẹn những tính năng vượt trội so với 3G LTE.
Ngày nay tất cả đều đóng ý với nhau rằng để đạt được tốc độ dữ liệu cao chỉ có thể nhờ vào công nghệ ăngten MIMO và kỹ thuật đa truy cập OFDMA. 3G LTE ra đời muộn hơn WiMAX và nó cũng không thể nào không dùng MIMO và OFDMA. Do vậy, nếu xét trình bình diện kỹ thuật truyền thông không dây (wireless communication) thì 3G LTE không có bất cứ một kỹ nghệ cơ bản nào vượt trội so với WiMAX di động. Nếu nhìn lại bảng so sánh ở trên sẽ thấy điểm khác nhau nổi bật là 3G LTE sử dụng kỹ thuật đa truy nhập SC-FDMA cho đường lên thay vì OFDMA như trong WiMAX.
Song, theo nhiều chuyên gia thì sự khác biệt này lại là một điểm yếu của 3G LTE. Thực tế SC-FDMA cho phép cải tiến PAR (Peak-to-Average power Ratio) tầm 2 dB ở máy phát. Tuy nhiên nó lại gây mất tầm 2-3 dB về hiệu suất (performance) truyền thông trên kênh truyền nhiễu fading ở đầu máy thu. Nhiều nghiên cứu gần đây cho thấy SC-FDMA thực tế cho một hiệu suất trên kênh lên thấp hơn so với OFDMA.
Nhìn chung về mặt kỹ thuật, hai công nghệ WiMAX và 3G LTE dường như ngang tài ngang sức với nhau. Song, công nghệ mạnh nhất, vượt trội nhất đôi khi không phải là công nghệ giành chiến thắng mà một công nghệ thành công là một công nghệ phù hợp nhất, hòa hợp nhất. Bây giờ chúng ta sẽ xem xét các khía cạnh khác liên quan đến sự cạnh tranh của WiMAX và 3G LTE trên đường tiến tới mạng di động thế hệ thứ 4.

Cạnh tranh giữa WiMAX và 3G LTE

WiMAX là một khao khát gia nhập vào thị trường thông tin di động của cộng đồng « công nghệ thông tin ». WiMAX là thuật ngữ được bắt đầu nhắc đến từ những năm 2000, với mục đích ban đầu chỉ hướng đến thị trường Internet băng rộng ở các vùng hẻo lánh. Tiếp theo, WiMAX hướng đến cung cấp giải pháp Internet băng rộng di động. Kể từ đó, nó được xem như là một đối thủ cạnh tranh của mạng thông tin di động 3G và bây giờ là 3G LTE. Nếu đặt WiMAX vào vị trí cạnh tranh với mạng thông tin di động, biết rằng mạng thông tin di động ngày nay có khoảng hơn 2,6 tỉ thuê bao trên thế giới, rõ ràng WiMAX gặp nhiều khó khăn để tìm kiếm thị phần của mình.
Lợi điểm của WiMAX so với 3G LTE là WiMAX đã sẵn sàng để được triển khai dịch vụ rộng khắp : thiết bị mạng WiMAX đã hoàn thiện, thiết bị đầu cuối WiMAX sẽ có mặt trong năm tới trong khi đó 3G LTE phải đợi thêm vài năm nữa. WiMAX vừa cung cấp giải pháp cố định vừa cung cấp giải pháp di động băng rộng với chi phí triển khai thấp hơn so với triển khai một mạng 3G/3G LTE hoàn toàn mới. Do vậy, WiMAX thực sự gây được chú ý của các nước đang phát triển mà ở đó mạng 3G chưa có, mạng Internet tốc độ cao bằng cáp xDSL chưa rộng khắp.
So với WiMAX, 3G LTE đã có một công nghệ đi trước là 2G, 3G với số lượng thuê bao đã có sẵn. Đây là một lợi thế lớn để triển khai 3G LTE. Đặc biệt các thiết bị di động 3G LTE sẽ tương thích với các mạng thông tin di động thế hệ trước, do vậy người dùng sẽ có thể chuyển giao dễ dàng giữa mạng 3G LTE với các mạng 2G GSM/GPRS/EDGE và 3G UMTS đã tồn tại. Điều này cho phép những nhà cung cấp mạng 3G LTE có thể triển khai mạng dần dần cũng giống hệt khi họ nâng cấp mạng 2G lên 3G.
Trong khi đó WiMAX phải triển khai mạng từ con số không. Do WiMAX không tương thích với các chuẩn di động không dây trước đó nên việc thiết bị đầu cuối WiMAX có được tích hợp với chip 2G/3G hay không vẫn còn là một câu hỏi mở. Nó hoàn toàn không phải là một câu hỏi về kỹ thuật mà là một vấn đề mang tính chiến lược. Nó tùy thuộc vào tác nhân nào sẽ triển khai mạng WiMAX trong tương lai : nhà cung cấp mạng thông tin di động 2G/3G hiện tại hay một nhà cung cấp mạng WiMAX hoàn toàn mới. Nếu là một nhà cung cấp mạng 2G/3G thì chắc chắn họ sẽ triển khai 3G LTE nếu như WiMAX không mang lại lợi ích nào đặt biệt vượt trội so với 3G LTE. Nếu nhà cung cấp chỉ có mạng 2G/2.5G, họ cũng có thể chọn lựa WiMAX như một sự nhảy cốc lên « gần » 4G thay vì đi lên 3G/3.5G rồi 3G LTE.
Như đã phân tích ở trên, việc triển khai 3G LTE từ mạng 3G, 3.5G có sẵn là một con đường dễ dàng. Làm như vậy các nhà cung cấp mạng có thể triển khai 3G LTE dần dần không cần thiết phải đảm bảo một vùng phủ rộng kín. Bên cạnh nhà cung cấp mạng vẫn tận dụng được mạng lõi 3G đã có, tận dụng hệ thống quản lý thuê bao và tính cước có sẵn. Từ này đến khi 3G LTE hoàn thiện và được vào sử dụng, 3.5G có đủ khả năng để đáp ứng nhu cầu dịch vụ băng rộng trước khi WiMAX thực sự chiếm được một thị phần quan trọng. Và thực tế có thể nhận thấy là các nhà cung cấp mạng 3G/3.5G họ không hề vội vàng trong việc tiến đến 3G LTE. Về khía cạnh kinh tế họ sẽ không triển khai 3G LTE trước khi thu lại được vốn và lãi từ việc nâng cấp lên 3G.

Kết luận

Dẫu rằng mỗi người có những nhận định khác nhau, những cái nhìn khác nhau về tính cạnh tranh của hai công nghệ này. Có một điều thống nhất là hai công nghệ này đã thu hút được một sự quan tâm lớn, tạo được một bước nhảy trong công nghệ thông tin di động không dây. Điểm yếu của WiMAX là nó không có tính kế thừa từ các hệ thống mạng có sẵn như 3G LTE đôi khi lại trở thành một điểm mạnh vì nó cho phép nhiều tác nhân mới thâm nhập vào thị trường thông tin di động. Sự thâm nhập này sẽ làm tăng tính cạnh tranh, tăng chất lượng dịch vụ và giảm giá cước viễn thông cho người dùng.
Cạnh tranh không phải bao giờ cũng là một giải pháp tốt nhất. Tại sao không nghĩ đến một sự kết hợp giữa WiMAX và 3G LTE để cùng nhau mang đến những dịch vụ tốt nhất cho người dùng ?

ThS. Nguyễn Vương Quốc Thịnh

WiMAX - tổng quan công nghệ

WiMAX (viết tắt của Worldwide Interoperability for Microwave Access) là tiêu chuẩn IEEE 802.16 cho việc kết nối Internet băng thông rộng không dây ở khoảng cách lớn.
Theo Ray Owen, giám đốc sản phẩm WiMax tại khu vực châu Á-Thái Bình Dương của tập đoàn Motorola: WiMax hoàn toàn không phải là phiên bản nâng cấp của Wi-Fi có tiêu chuẩn IEEE 802.11, WiMax và Wi-Fi tuy gần gũi nhưng là 2 sản phẩm khác nhau và cũng không phải phát triển từ WiBro (4G), hay 3G.
WiMAX là kỹ thuật viễn thông cung cấp việc truyền dẫn không dây ở khoảng cách lớn bằng nhiều cách khác nhau, từ kiểu kết nối điểm - điểm cho tới kiểu truy nhập tế bào. Dựa trên các tiêu chuẩn IEEE 802.16, còn được gọi là WirelessMAN. WiMAX cho phép người dùng có thể duyệt Internet trên máy laptop mà không cần kết nối vật lý bằng cổng Ethernet tới router hoặc switch. Tên WiMAX do WiMAX Forum tạo ra, bắt đầu từ tháng 6 năm 2001 đề xướng việc xây dựng một tiêu chuẩn cho phép kết nối giữa các hệ thống khác nhau. Diễn đàn này cũng miêu tả WiMAX là "tiêu chuẩn dựa trên kỹ thuật cho phép truyền dữ liệu không dây băng thông rộng giống như với cáp và DSL."
Khoá họp Hội đồng thông tin vô tuyến 2007 (RA-07) của Liên minh viễn thông thế giới (ITU), được tổ chức tại Gennève, Thụy Sĩ từ ngày 15-19/10/2007, đã thông qua việc bổ sung giao diện vô tuyến OFDMA TDD WMAN (WiMAX di động) vào họ giao diện vô tuyến IMT-2000 (thường vẫn được biết dưới tên 3G).
Chuẩn IMT-2000 hiện có 5 giao diện vô tuyến CDMA Direct Spread (thường được biết dưới tên WCDMA), CDMA Multi-Carrier (thường được biết dưới tên CDMA 2000), CDMA TDD, TDMA Single-Carrier, FDMA/TDMA. Sau khi được bổ sung, chuẩn giao diện OFDMA TDD WMAN sẽ là chuẩn giao diện vô tuyến thứ 6 của họ IMT-2000.
Các chỉ tiêu về đặc tính phát xạ (phát xạ giả, phát xạ ngoài băng) của các trạm thu phát (BTS) và máy di động (MS) của WiMAX di động cũng đã được bổ sung vào các chuẩn hiện áp dụng cho IMT-2000.
RA-07 cũng thông qua khuyến nghị về việc sử dụng băng tần 2500-2690 MHz cho IMT-2000. Theo đó có 3 phương án (C1, C2, C3) sử dụng băng tần. Phương án C1 và C2 dành 2x70 MHz (đoạn 2500-2570 MHz và 2620-2690 MHz) sử dụng cho phương thức song công FDD để phù hợp với các công nghệ di động truyền thống như HSPA, LTE. Phương án C3 cho phép dùng linh hoạt giữa FDD và TDD, tạo thuận lợi cho việc sử dụng công nghệ TDD như WiMAX di động. Đây sẽ là cơ sở quan trọng cho việc quy hoạch tần số cho băng tần 2500-2690 MHz của các nước, cũng như ở Việt Nam.
Sở dĩ Diễn đàn WiMAX và các công ty ủng hộ WiMAX ra sức vận động để đưa WiMAX di động vào IMT-2000 là do WiMAX di động được phát triển dựa trên chuẩn 802.16e của IEEE và sản phẩm phải phù hợp với các bộ tiêu chí (profile) của Diễn đàn WiMAX (mỗi profile gồm nhiều tiêu chí, trong đó có băng tần sử dụng, phương thức song công). Tuy nhiên, cả IEEE lẫn Diễn đàn WiMAX lại không có vai trò trong việc đưa ra các quyết định liên quan đến băng tần số được sử dụng.
Trong khi đó băng tần 2500-2690 MHz, băng tần chính của WiMAX di động, lại được ITU phân bổ và hiện được nhiều nước trên thế giới, đặc biệt là Châu Âu dành cho IMT-2000. Dự kiến đây sẽ là băng tần của các công nghệ mới phát triển từ công nghệ di động thế hệ 2 (GSM, CDMA) lên như HSPA, LTE, UMB sử dụng phương thức song công FDD. Vì vậy, WiMAX ít có hoặc không có cơ hội được sử dụng tại các nước đó.
Do đó, việc được kết nạp vào họ tiêu chuẩn IMT-2000 của ITU, sẽ giúp gạt bỏ các trở ngại pháp lý, mở ra cơ hội để WiMAX di động có thể được sử dụng các băng tần dành cho IMT-2000, được tham gia vào một thị trường rộng lớn.
Tuy nhiên, tại RA-07, Trung quốc, Đức và một số nhà sản xuất viễn thông cho rằng WiMAX di động chưa đáp ứng được các tiêu chí kỹ thuật cần thiết của IMT-2000 như các tham số về đặc tính phát xạ, hệ số dò kênh lân cận (ACLR), chất lượng các dịch vụ của mạng chuyển mạch kênh, yêu cầu về chuyển vùng (seamless handover),.. Vì vậy, mặc dù thông qua việc bổ sung WiMAX di động, nhưng RA-07 yêu cầu cần tiếp tục nghiên cứu gấp về các vấn đề còn tồn tại này.
Hơn nữa, việc được kết nạp vào họ IMT-2000 không nghĩa sẽ đảm bảo được thành công về mặt thương mại cho WiMAX di động. Ngay trong 5 chuẩn của họ IMT-2000 trước đây, chỉ có WCDMA là đang có sự thành công tương đối trên thị trường, 4 chuẩn còn lại vẫn còn rất ít được sử dụng trong thực tế.
Bên cạnh vấn đề kết nạp WiMAX, RA-07 đã thông qua cách gọi liên quan đến IMT-2000, các hệ thống sau IMT-2000 và IMT tiên tiến (IMT-2000 Advanced). Do định nghĩa về IMT-2000 (3G) của ITU đã được xây dựng từ nhiều năm trước, nhiều công nghệ sau này như HSDPA, HSUPA, LTE, WiMAX di động có khả năng cung cấp tốc độ kết nối cao hơn so với tốc độ do ITU định nghĩa, nên nhiều hãng đã tận dụng để quảng cáo các hệ thống của mình là 3.5G, 3.9G thậm chí là 4G.
Trong khoá họp lần này, RA-07 đã quyết định cải tổ lại cơ cấu các nhóm nghiên cứu về thông tin vô tuyến. Theo đó ITU thành lập nhóm nghiên cứu 5 về các nghiệp vụ thông tin vô tuyến mặt đất trên cơ sở sát nhập 2 nhóm nghiên cứu Nhóm nghiên cứu 8 về các nghiệp vụ thông tin vô tuyến di động, Nhóm nghiên cứu 9 về nghiệp vụ cố định. Các hoạt động nghiên cứu liên quan đến vệ tinh nằm rải rác ở Nhóm nghiên cứu 6, 8, 9 cũng được gom về nhóm nghiên cứu 4 để thành Nhóm nghiên cứu về các nghiệp vụ vệ tinh. Nhiệm vụ chính của các Nhóm nghiên cứu vô tuyến là nghiên cứu các vấn đề đặt ra trong lĩnh vực thông tin vô tuyến, quản lý phổ tần từ đó xây dựng các khuyến nghị (ITU-R Recommendation), các Báo cáo (Report), các Sổ tay (Handbook). Các Nhóm nghiên cứu của ITU-R còn đống vai trò quan trọng trong việc chuẩn bị nội dung cho các Hội nghị thông tin vô tuyến thế giới.
Ngay sau khi kết thúc RA-07, Hội nghị thông tin vô tuyến thế giới 2007 (WRC-07) sẽ được tổ chức từ ngày 22/10 đến 16/11/2007 tại ITU


I. Kiến trúc của mạng WiMAX

Trước tiên tôi chọn giới thiệu kiến trúc của mạng WiMAX.

Xem 2 hình minh họa dưới đây.

Hình 1

Hinh 2

Ta thấy để thiết lập một mạng WiMAX ta cần có các trạm phát BS (giống BTS của mạng thông tin di động). Nhiều BS sẽ được kết nối, quản lý bởi một ASN (Access Service Network) gateway. ASN Gateway này là thực thể miêu tả trong WiMAX Forum, tuy nhiên trong các mạng triển khai thực tế thì người ta hay gọi là WAC (WiMAX (hay Wireless) Access Controller). Nhiều WAC tập hợp lại tạo thành một ASN. Nếu so sánh với mạng thông tin di động thì WAC/ASN GW giống như là BSC/RNC. Nhiều ASN có thể kết nối với nhau thông qua giao diện R4.

Nhiều ASN của cùng một operator tạo thành một NAP (Network Access Provider). Nhiều nhà cung cấp khác nhau sẽ có thể triển khai nhiều mạng truy nhập khác nhau, rồi chúng sẽ cùng kết nối với một hoặc nhiều CSN (Core Service Network).

ASN định nghĩa một đường biên logic và biểu diễn theo một cách thuận lợi để mô tả tập hợp các thực thể chức năng và các luồng bản tin tương ứng kết hợp với các dịch vụ truy cập. ASN biểu diễn đường biên cho chức năng liên kết nối với các mạng WiMAX khách, các chức năng dịch vụ kết nối WiMAX và tập các chức năng của nhiều nhà cung cấp khác nhau.

Hình 3

CSN được định nghĩa là một tập các chức năng mạng cung cấp các dịch vụ kết nối IP cho các thuê bao WiMAX. Một CSN có thể gồm các phần tử mạng như router (bộ định tuyến), máy chủ/proxy nhận thực AAA, cơ sở dữ liệu người dùng và thiết bị cổng liên mạng. Một CSN có thể được triển khai như một phần của nhà cung cấp dịch vụ mạng WiMAX.

II. Kỹ thuật truyền thông số (Đặc điểm lớp PHY)

1. OFDM

OFDM – ghép kênh phân chia theo tần số trực giao là một kỹ thuật điều chế đa sóng mang. Kỹ thuật này có thể đạt được tốc độ dữ liệu rất cao, chống nhiễu giao thoa ký tự - ISI (Inter – symbol Interference) và giải quyết được vấn đề tín hiệu đa đường.

Công nghệ OFDM chia luồng dữ liệu thành nhiều đường truyền băng hẹp trong vùng tần số sử dụng các sóng mang con trực giao với một sóng mang con khác. Nhưng sóng mang con này sau đó ghép thành các kênh tần số để truyền vô tuyến.

2. OFDMA

OFDMA là công nghệ đa sóng mang phát triển từ công nghệ OFDM, ứng dụng như một công nghệ đa truy cập. OFDMA hỗ trợ các nhiệm vụ của các sóng mang con đối với các thuê bao nhất định. Mỗi một nhóm sóng mang con được biểu thị như một kênh con (subchannel) và mỗi thuê bao được chỉ định một hoặc nhiều kênh con để truyền phát dựa trên mỗi yêu cầu cụ thể lưu lượng của mỗi thuê bao.



Hình 4

OFDMA có một số ưu điểm như khả năng linh hoạt tăng, thông lượng và tính ổn định được cải tiến. Bằng việc ấn định các kênh con cho các thuê bao cụ thể, việc truyền phát từ một số thuê bao có thể xảy ra đồng thời mà không cần sự can thiệp nào, do đó sẽ giảm thiểu tác động như ảnh hưởng đa truy nhập – MAI.

3. AAS

Các hệ thống anten thích ghi AAS (Adaptive Antena System) là một phần của lựa chọn tiêu chuẩn IEEE 802.16. AAS có khả năng điều chỉnh búp sóng chỉ tập trung vào một hướng nhất định hoặc cũng có thể tập trung vào nhiều hướng. Điều này có nghĩa là trong khi phát tín hiệu được giới hạn theo một hướng nhất định của phía thu, giống như một điểm sáng. Còn khi thu, hệ thống AAS cũng có khả năng giảm nhiễu đồng kênh từ các vị trí khác. AAS được coi là sự phát triển của tương lai, có khả năng cải thiện tỷ lệ tái sử dụng phổ tần và khả năng của một mạng WiMAX.

4. MIMO

Lựa chọn phân tập phát WiMAX sử dụng mã hóa thời gian không gian, làm giảm quỹ dự trữ yêu cầu và tránh nhiễu. Đối với phân tập phát, rất nhiều các phương pháp kết hợp để cải thiện khả năng của hệ thống.

-Mã không gian – thời gian (Space Time Code – STC): Hỗ trợ phân tập truyền như mã Alamouti để cung cấp khả năng phân tập không gian và giảm dự trữ suy hao tín hiệu.

-Ghép kênh không gian (SM): Hỗ trợ ghép kênh không gian để tận dụng tốc độ đỉnh cao hơn và giảm thông lượng. Nhờ ghép kênh không gian, nhiều luồng sẽ được truyền trên hệ thống nhiều anten. Nếu phía thu cũng có hệ thống nhiều anten, nó có thể phân tách các luồng khác nhau để đạt được thông lượng cao hơn so với các hệ thống đơn anten.

5. AMC

Điều chế thích nghi cho phép hệ thống WiMAX điều chỉnh được phương pháp điều chế tín hiệu dựa trên điều kiện SNR của tuyến. Khi tuyến truyền dẫn có chất lượng tốt, kiểu điều chế cao nhất được sử dụng, làm tăng dung lượng của hệ thống. Khi tuyến ở mức chất lượng thấp hơn, hệ thống WiMAX có thể chuyển sang một kiểu điều chế thấp hơn để đảm bảo chất lượng kết nối và ổn định của tuyến.

Minh họa các loại điều chế dùng trong wimax như hình dưới đây.

Hình 5

Ngoài ra điều chế BPSK cũng được dùng để gửi các thông báo tín hiệu (signalling), broadcast...trong hệ thống Wimax vì nó cho 1 vùng phủ lớn nhất. Nguyên tắc "adaptive" của nó hoạt động dựa trên sơ đồ như hình dưới đây



Hình 6.

6. Kỹ thuật sửa lỗi trước (FEC)

Các kỹ thuật sửa lỗi trước được áp dụng trong hệ thống WiMAX để giảm tỷ số tín hiệu trên tạp âm yêu cầu. Mã hóa sửa lỗi trước (FEC) Reed Solomon, mã hóa xoắn các thuật toán chèn ký tự được sử dụng để phát hiện và sửa lỗi nhằm cải thiện thông lượng của hệ thống.

7. Sử dụng lại tần số

Liên quan đến vấn đề frequency reuser trong wimax, thì freq reuse factor của WiMAX là 1. Tức là dãy tần số dùng trên 2 cells kề nhau là như nhau. Bạn sẽ nói rằng như thế sẽ bị nhiễu (interference). Vì trong wimax sử dụng ofdma, và mỗi một user sẽ được phân bổ một số tấn số + symbol time nhất định (gọi là zone/chunk). Như thế để tránh nhiễu thì các user ở bìa của những cell gần nhau sẽ được phân bố các tần số khác nhau. Đó chính là khái niệm fractional freq reuse. Xem hình minh họa dưới đây để rõ hơn.


Hình 7

8. HARQ

WiMAX di động cũng hỗ trợ HARQ. HARQ được phép sử dụng giao thức “Dừng và Đợi” N kênh để cung cấp khả năng đáp ứng nhanh để đóng gói lỗi và cải tiến khả năng phủ sóng đường biên cell. Ngoài ra để cải thiện hơn nữa sự ổn định của đường truyền. Một kênh dành riêng ACK cũng được cung cấp ở đường lên để báo hiêu ACK/NACK của HARQ. Hoạt động đa kênh HARQ cũng được hỗ trợ.


III. Đặc điểm lớp MAC của WiMAX di động


1. QoS

Tiền đề cơ bản của kiến trúc MAC trong IEEE 802.16 là QoS. Nó định nghĩa luồng dịch vụ mà có thể ánh xạ đến các điểm mã DiffServ hoặc các nhãn luồng MPLS để cho phép kết nối đầu cuối tới đầu cuối theo giao thức IP trên cơ sở QoS. Ngoài ra, các nguyên lý báo hiệu trên cơ sở subchannelization và MAP cung cấp một cơ chế linh động cho việc lập lịch tối ưu tài nguyên không gian, tần số và thời gian trên giao diện vô tuyến frame by frame.

QoS phụ thuộc vào 3 yếu tố sau:

- Giao thức MAC hoạt động hướng kết nối (connection – oriented). Mỗi một gói tin đều được đưa vào một kết nối cụ thể, kết nối này là kết nối ảo, được xác định bởi tham số CID. Việc tạo nên các kết nối ảo này khiến các gói tin được gửi đi một cách hiệu quả và nhanh chóng.

- Cơ chế cấp phát băng thông Request/Grant: Cơ chế này làm tăng hiệu quả sử dụng băng thông của hệ thống, đặc biệt là các hệ thống mà có nhiều thuê bao. Trong cơ chế này, MS yêu cầu thông lượng băng thông cấp phát từ BS thông qua một số các phương thức khác nhau. BS sẽ cấp phát băng thông bằng cách cấp phát các timeslot tới các MS có yêu cầu.

- Phân loại dịch vụ: Giống như mọi hệ thống hỗ trợ QoS khác, việc phân loại dịch vụ cũng là điểm cốt lõi trong việc đảm bảo QoS. Xem các loại hình dịch vụ QoS trong bảng dưới đây:


Hình 8

2.Scheduling

Cơ chế lập lịch (scheduling) trong WiMAX không được qui định cụ thể trong chuẩn. Có nhiều hình thức lập lịch khác nhau, mục đích là làm thế nào để sự dụng tài nguyên UL va DL một cách có hiệu quả nhất trong khi luôn đảm bảo được QoS yêu cầu.

Các bạn có thể xem thêm chủ đề RRA trong hệ thống OFDMA ở đây

3. Power Saving Management

WiMAX di động hỗ trợ hai chế độ vận hành– Sleep Mode và Idle Mode để tiết kiệm năng lượng tiêu thụ.

Sleep Mode là trạng thái mà MS ở trong giai đoạn trước khi có bất cứ trao đổi thông tin gì với trạm gốc qua giao diện vô tuyến. Sleep Mode cho phép MS tối thiểu năng lượng tiêu thụ và tối thiểu tài nguyên vô tuyến của trạm gốc. Sleep Mode cũng cung cấp khả năng linh hoạt cho MS để dò các trạm gốc khác để thu thập thông tin hỗ trợ chuyển giao (handoff) trong Sleep Mode.

Idle Mode cung cấp một cơ chế cho MS để sẵn sàng một cách định kỳ nhận các bản tin quảng bá DL mà không cần đăng ký với một trạm gốc xác định nào khi MS di chuyển trong một môi trường có đường truyền vô tuyến được phủ sóng bởi nhiều trạm gốc.


4. Quản lý di động

Có ba phương pháp chuyển giao được chuẩn IEEE 802.16 hỗ trợ - Chuyển giao cứng (Hard Handoff – HHO), Chuyển trạm gốc nhanh (Fast Base Station Switching – FBSS) và chuyển giao phân tập vỹ mô (Macro Diversity Handover – MDHO). Trong đó, chuyển giao HHO là bắt buộc còn FBSS và MDHO là hai chế độ tùy chọn.

Cũng giông giống như chuyển giao nhanh (FBSS hay MDHO) trong hệ thống CDMA, chuyển giao nhanh trong Wimax cũng chỉ có thể thực hiện giữa các BS nằm trong cái gọi là Diversity Set (tập hợp các BS hoạt động trong cùng tần số, có SINR đủ lớn để MS có thể kết nối được và đặc biệt là chúng phải đồng bộ (synchronisation)). Trong Diversity Set này thì chỉ có 1 cái BS được gọi là anchor (cái BS chủ lực, hay còn gọi là điểm kết nối, khớp ). Sự khác nhau giữa MDHO và FBSS là ở chổ: đối với FBSS, MS chỉ communicate thông tin data thông qua BS anchor thôi, còn MDHO thì MS communicate thông tin data traffic qua tất cả các BS nằm trong Diversity Set.

5. Bảo mật

WiMAX di động hỗ trợ tốt nhất các đặc tính bảo mật lớp nhờ áp dụng các công nghệ tốt nhất đang sẵn có hiện nay. Nó hỗ trợ nhận thực giữa thiết bị/người dùng, giao thức quản lý khóa linh động, mã hóa lưu lượng, bảo vệ bản tin điều khiển và tối ưu hóa giao thức bảo mật cho các chuyển giao nhanh.

- Giao thức quản lý khóa: Giao thức quản lý khóa và bảo mật phiên bản 2 (Privacy and Key Management Protocol Version 2 – PKMv2) là một trong những khái niệm bảo mật cơ bản của WiMAX di động. Giao thức này quản lý bảo mật MAC sử dụng bản tin PKM – REQ/RSP. Nhận thực PKM EAP, điểu khiển mã hóa lưu lượng, trao đổi khóa chuyển giao và các bản tin bảo mật Mutilcast/Broadcast đều dựa trên giao thức này.

- Nhận thực thiết bị/người dùng: WiMAX di động hỗ trợ nhận thức thiết bị và người dùng sử dụng giao thức IETF EAP bằng cách cung cấp hỗ trợ “credentials” được dựa trên SIM, hoặc dựa trên USIM hoặc chứng nhận số hoặc dựa trên tên người sử dụng/mật khẩu.

- Mã hóa lưu lượng: AES-CCM là một mã hoá được sử dụng để bảo vệ tất cả số liệu người sử dụng qua giao diện Wimax MAC di động.

- Bảo vệ các bản tin điều khiển: Dữ liệu điều khiển được bảo vệ bởi AES dựa trên CMAC, hoặc sơ đồ HMAC dựa trên MD5.

- Hỗ trợ chuyển giao nhanh: Một sơ đồ bắt tay 3 bước được hộ trợ bởi Wimax di động để tối ưu cơ chế nhận thực lại cho hộ trợ chuyển vùng nhanh. Cơ chế này cũng hữu ích trong việc chống lại việc tấn công giữa chừng của “hacker”.

6. Dịch vụ Muticast và Broadcast – MBS

Dịch vụ MBS trong WiMAX di động kết hợp các đặc tính tốt nhất của DVB – H, MediaFLO và 3GPP E – UTRA, thỏa mãn những yêu cầu sau:
- Tốc độ dữ liệu cao và khả năng phủ sóng sử dụng mạng một tần số (SFN – Single Frequency Network)
- Cấp phát tài nguyên vô tuyến linh động.
- MS tiêu thụ năng lượng thấp.
- Hỗ trợ dữ liệu ngang hàng bao gồm các luồng audio và video.
- Thời gian chuyển mạch kênh nhỏ.

7. Truy nhập kênh truyền (network entry and initialization)

Khi một MS mở máy (power on) nó sẽ tiến hành các bước sau để kết nối với trạm BS:

- Thực hiện quá trình tìm kiếm và đồng bộ hóa với các BS mà nó thu được sóng radio. Để thực hiện được điều này, các MS sẽ tiến hành scan các tần số DL (đã biết trước), lắng nghe các DL preamble phát ra từ các BS và đồng bộ hóa dựa vào các thông điệp điều khiển (control message).

- Tiếp theo MS nhận biết các thông số uplink bằng cách lắng nghe các UL-MAP.

- MS thực hiện quá trình ranging. Cái này giống như power control trong mạng thông tin di động tế bào.

- MS thỏa thuận về việc thuê nhận băng thông với BS cũng như các thông tin về profile.

- MS thực hiện quá trình nhận thực, trao đổi khóa và tiến hành đăng ký truy nhập vào mạng. Kết nối IP được thiết lập

- Luồng dịch vụ có thể bắt đầu được trao đổi.

 Xem sơ đồ dưới đây


Hình 9


Nguồn http://vntelecom.org/diendan/showthread.php?t=393

Các bạn có thể xem thêm tình hình wimax trên thị trường VN : http://vntelecom.org/diendan/showthread.php?t=6528&highlight=wimax 

Nói chung thì hiện cạnh tranh phổ biến trên con đường tiến tới chuẩn 4G, 2 đối thủ nặng ký nhất là LTE vàWimax thì LTE ngày càng áp đảo, truóc đồ án đã từng nghĩ sẽ làm về cái này nhưng thấy không có tương lai , nếu có ra thì lại giống cdma ở VN thì chán. Xem thêm

Thứ Sáu, 2 tháng 3, 2012

Kiến trúc hệ thống viễn thông di động toàn cầu (UMTS)

Các bạn nên xem trước bài tổng quan về UMTS
Các từ viết tắt SGSN, GGSN được giải thích ở phần gần cuối bài viết

Hệ thống viễn thông di động toàn cầu là 1 trong số các chuẩn di động 3G, phát triển lên từ EGDE 2.75G; GPRS 2.5G và mạng tổ ong GSM 2G

Kiến trúc UMTS


Kiến trúc mạng UMTS
Như hình vẽ thể hiện, Mạng UMTS bao gồm 2 phần, phần truy nhập vô tuyến (UMTS Terrestrial Radio Access Network- UTRAN) và phần mạng lõi (core). Phần truy nhập vô tuyến bao gồm Node B và RNC. Còn phần core thì có core cho data bao gồm SGSN, GGSN; Phần core cho voice thì có MCS và GMSC.
Node B: Chức năng chính của Node B là xử lý lớp vật lý (L1) ở giao diện vô tuyến như mã hóa kênh, đan xen, trải phổ, điều chế... Nó cũng thực hiện một chức năng tài nguyên vô tuyến như điều khiển công suất vòng trong,...
RNC: Trong trường hợp Node B chỉ có một kết nối với mạng thì RNC chịu trách nhiệm điều khiển Node B được gọi là CRNC. Ngược lại, khi Node B có hơn một kết nối mạng thì các RNC được chia thành hai loại khác nhau theo vai trò logic của chúng.
- RNC phục vụ (Serving RNC): Đây là RNC kết nối cả đường lưu lượng và báo hiệu RANAP với mạng lõi.SRNC cũng kết cuối báo hiệu điều khiển tài nguyên vô tuyến giữa UE và UTRAN, xử lý số liệu lớp 2 (L2) từ/tới giao diện vô tuyến. SRNC của Node B này cũng có thể là CRNC của một Node B khác.
- RNC trôi (Drift RNC): Đây là RNC bất kỳ khác với SRNC, để điều khiển các ô được MS sử dụng. Khi cần, DRNC có thể thực hiện kết hợp và phân chia ở phân tập vĩ mô. DRNC không thực hiện xử lý ở lớp 2 đối số liệu từ/tới giao diện vô tuyến mà chỉ định tuyến số liệu một cách trong suốt giữa các giao diện Iub và Iur. MộtUE có thể không có hoặc có một hay nhiều DRNC.


Các Giao diện trong mạng:

  • Giao diện Iub
Giao diện Iub là một giao diện quan trọng nhất trong số các giao diện của hệ thống mạng UMTS. Sở dĩ như vậy là do tất cả các lưu lượng thoại và số liệu đều được truyền tải qua giao diện này, cho nên giao diện này trở thành nhân tố ràng buộc bậc nhất đối với nhà cung cấp thiết bị đồng thời việc định cỡ giao diện này mang ý nghĩa rất quan trọng. Đặc điểm của giao diện vật lý đối với BTS dẫn đến dung lượng Iub với BTS có một giá trị quy định. Thông thường để kết nối với BTS ta có thể sử dụng luồng E1, E3 hoặc STM1 nếu không có thể sử dụng luồng T1, DS-3 hoặc OC-3. Như vậy, dung lượng của các đường truyền dẫn nối đến RNC có thể cao hơn tổng tải của giao diện Iub tại RNC.Chẳng hạn nếu ta cần đấu nối 100BTS với dung lượng Iub của mỗiBTS là 2,5 Mbps, biết rằng cấu hình cho mỗi BTS hai luồng 2 Mbps và tổng dung lượng khả dụng của giao diện Iub sẽ là 100 x 2 x 2 = 400 Mbps. Tuy nhiên tổng tải của giao diện Iub tại RNC vẫn là 250 Mbps chứ không phải là 400 Mbps.
  • Giao diện Iur
Ta có thể thấy rõ vị trí của giao diện Iur trong cấu hình của phần tử của mạng UMTS. Giao diện Iur mang thông tin của các thuê bao thực hiện chuyển giao mềm giữa hai Node B ở các RNC khác nhau. Tương tự như giao diện Iub, độ rộng băng của giao diện Iur gần bằng hai lần lưu lượng do việc chuyển giao mềm giữa hai RNC gây ra.
  • Giao diện Iu
Giao diện Iu là giao diện kết nối giữa mạng lõi CN và mạng truy nhập vô tuyến UTRAN. Giao diện này gồm hai thành phần chính là:
• Giao diện Iu-CS: Giao diện này chủ yếu là truyền tải lưu lượng thoại giữa RNC và MSC/VLR. Việc định cỡ giao diện Iu-CS phụ thuộc vào lưu lượng dữ liệu chuyển mạch kênh mà chủ yếu là lượng tiếng.
• Giao diện Iu-PS: Là giao diện giữa RNC và SGSN. Định cỡ giao diện này phụ thuộc vào lưu lượng dữ liệu chuyển mạch gói. Việc định cỡ giao diện này phức tạp hơn nhiều so với giao diện Iub vì có nhiều dịch vụ dữ liệu gói với tốc độ khác nhau truyền trên giao diện này.
  • Giao diện Uu
Đây là giao diện không dây (duy nhất) của mạng UMTS. Tất cả giao diện khác đều có dây dẫn hết. Liên lạc trên giao diện này dựa vào kỹ thuật FDD/TDD WCDMA. Thật ra, nếu nhìn trên tổng thể kiến trúc mạng UMTS ta sẽ thấy là "nút cổ chai" của mạng UMTS chính là ở capacity của giao diện Uu này. Nó sẽ giới hạn tốc độ truyền thông tin của mạng UMTS. Nếu ta có thể tăng tốc độ data rate của giao diện này thì ta có thể tăng tốc độ của mạng UMTS. Thế hệ tiếp theo của UMTS đã sử dụng OFDMA kết hợp MIMO thay vì WCDMA để tăng tốc độ....

Lõi mạng Core Network

Trong phần mạng lõi (core) có 2 phần, mạng lõi data (gồm 2 thực thể chính là SGSN và GGSN) và mạng lõi cho voice (gồm GMSC và MSC). Ngoài 4 thực thể vừa nêu, chúng ta còn có các thành phần khác như là HLR (HSS), VLR, AuC, EiR, BG. Vài trò, và các chức năng chính của từng thành phần sẽ được miêu tả ngắn gọn trong bài viết này.
  • SGSN = Serving GPRS Support Node. Trong mạng lõi GPRS của 1 operator có nhiều SGSN chứ không phải chỉ có 1. Mỗi SGSN kết nối trực tiếp với 1 số RNC. Mỗi RNC lại quản lý 1 số Node B, và mỗi node-B sẽ có một số UE đang nối kết. SGSN quản lý tất cả các UE đang sử dụng dịch vụ data trong vùng của nó. Vài trò của SGSN là
- Authenticate (xác minh) các UE đang dùng dịch vụ data nối kết với nó
- Quản lý việc đăng ký của 1 UE vào mạng GPRS (data)
- Quản lý quá trình di động của UE. Cụ thể là SGSN phải biết là UE hiện đang nối kết với thằng Node-B nào tại một thời điểm. Tùy theo UE đang ở mode active (đang liên lạc) hay idle (không liên lạc) mà độ chính xác của thông tin liên quan đến vị trí UE sẽ khác nhau. SGSN sẽ phải quản lý và theo dõi sự thay đổi vị trí (location area identity/ routing area identity) của UE theo thời gian.
- Tạo dựng, duy trì và giải phóng các "PDP context" (các thông tin liên quan đến connection của UE mà nó cho phép/qui định việc gửi và nhận thông tin của UE)
- Nhận và chuyển thông tin từ ngoài mạng data (Internet chẳng hạn) đến UE và ngược lại.
- Quản lý việc tính tiền (billing) đối với các UE
- Tìm và đánh thức idle UE khi có cuộc gọi tìm đến UE (paging)
- etc...
  • GGSN= Gateway GPRS Support Node . Như đúng tên gọi của nó, nó là một cái gateway giữa mạng GPRS/UMTS và các mạng ở ngoài (external network, như Internet chẳng hạn, các mạng GPRS khác). Vài trò của nó
- Nhận và chuyển thông tin từ UE gửi ra ngoài mạng external và ngược lại từ ngoài đến UE. Packet thông tin từ SGSN gửi đến GGSN sẽ được "decapsulate" trước khi gửi ra ngoài vì thông tin truyền giữa SGSN và GGSN là truyền trên 'GTP tunnel'.
- Nếu thông tin từ ngoài đến GGSN để gửi đến một UE trong khi chưa tồn tại PDP context, thì GGSN sẽ yêu cầu SGSN thực hiện paging và sau đó sẽ thực hiện quá trình PDP context để chuyển cuộc gọi đến UE.
- Trong suốt quá trình liên lạc thông qua nối kết mạng UMTS, UE sẽ chỉ connect với 1 GGSN (mà GGSN đó nối kết với dịch vụ mà UE đang dùng). Dù có di chuyển đi đâu đi nữa, GGSN vẫn không đổi. Dĩ nhiên là SGSN, RNC và Node-B sẽ thay đổi. GGSN cũng tham gia vào quản lý quá trình di động của UE.
SGSN và GGSN đều có 1 địa chỉ IP cố định (có thể là private IP).

Thứ Tư, 29 tháng 2, 2012

Hệ thống viễn thông di động toàn cầu (UMTS)

Hệ thống viễn thông di động toàn cầu (UMTS) là 1 trong các công nghệ di động 3G. UMTS dựa trên nền tảng CDMA băng rộng (WCDMA), được chuẩn hóa bởi Tổ chức các đối tác phát triển 3G (3GPP), và là lời đáp của Châu Âu cho yêu cầu phát triển 3G đối với hệ thống di động tổ ong của tổ chức ITU IMT2000. UMTS đôi khi còn được gọi là 3GSM, để chỉ sự kết hợp về bản chất công nghệ 3G của UMTS và chuẩn GSM truyền thống.
Lịch sử
Ngay từ đầu những năm 90 của thế kỷ 20, Hiệp hội Tiêu chuẩn Viễn thông châu Âu (ETSI) đã bắt đầu trưng cầu phương án kỹ thuật của tiêu chuẩn3G và “vội vàng” gọi chung kỹ thuật 3G là UMTS (Universal Mobile Telecommunications Systems) có nghĩa là các hệ thống thông tin di động đa năng. CDMA băng rộng (WCDMA) chỉ là một trong các phương án được khuyến nghị (băng rộng lên tới 5 MHz).
Sau đó sự tham gia tích cực của Nhật Bản vào việc xây dựng các tiêu chuẩn này đã thúc đẩy nhanh chóng sự phát triển của công nghệ3G trên phạm vi toàn cầu. Năm 1998, châu Âu và Nhật đạt được sự nhất trí về những tham số chủ chốt của Khuyến nghị CDMA băng rộng và đưa nó trở thành phương án kỹ thuật dùng giao diện không gian FDD (ghép tần số song công - Frequency Division Duplex) trong hệ thống UMTS. Và từ đó phương án kỹ thuật này được gọi là WCDMA để nêu rõ sự khác biệt với tiêu chuẩn CDMA băng hẹp của Mỹ (băng rộng chỉ có 1,25 MHz).
Tiếp tục phát triển một cách logic, UMTS trở thành một trong những tiêu chuẩn 3G của tổ chức tiêu chuẩn hoá thế giới 3GPP (Tổ chức những người bạn hợp tác về 3G) và không chỉ định nghĩa giao diện không gian; chủ thể của nó bao gồm các khuyến nghị về các giao diện và một loạt các quy phạm kỹ thuật về các mạch kết nối và mạch phân nhóm nòng cốt củaCDMA.
UMTS là viết tắt của Universal Mobile Telecommunication System. UMTS là mạng di động thế hệ thứ 3 (3G) sử dụng kỹ thuật trãi phổ W(wideband)-CDMA. UMTS được chuẩn hóa bởi tổ chức 3GPP. UMTS đôi khi còn được gọi là 3GSM để chỉ khả năng "interoperability" giữa GSM và UMTS. UMTS được phát triển lên từ các nước sử dụng GSM. UMTS sử dụng băng tầng khác với GSM.
Đặc trưng
UMTS, dùng công nghệ CDMA băng rộng WCDMA, hỗ trợ tốc độ truyền dữ liệu lên đến 21 Mbps (về lý thuyết, với chuẩn HSPDA). Thực tế, hiện nay, tại đường xuống, tốc độ này chỉ có thể đạt 384 kbps (với máy di động hỗ trợ chuẩn R99), hay 7.2 Mbps (với máy di động hỗ trợ HSPDA). Dù sao, tốc độ này cũng lớn hơn khá nhiều so với tốc độ 9.6 kbps của 1 đơn kênh GSM hay 9.6 kbps của đa kênh trong HSCSD (14.4 kbit/s của CDMAOne) và một số công nghệ mạng khác.
Nếu như thế hệ 2G của mạng tổ ong là GSM, thì GPRS được xem là thế hệ 2.5G. GPRS, dùng chuyển mạch gói, khác so với chuyển mạch kênh (dành kênh riêng) của GSM, hỗ trợ tốc độ dữ liệu cao hơn (lý thuyết đạt: 140.8 kbit/s, thực tế, khoảng 56 kbit/s). E-GPRS hay EGDE, được xem là thế hệ 2.75G, là sự cải tiến về thuật toán mã hóa. GPRS dùng 4 mức mã hóa (coding schemes; CS-1 to 4), trong khi EDGE dùng 9 mức mã hóa và điều chế (Modulation and Coding Schemes; MCS-1 to 9). Tốc độ truyền dữ liệu thực của EDGE đạt tới 180 kbit/s.
Từ năm 2006, mạng UMTS được nhiều quốc gia nâng cấp lên, với chuẩn HSPDA, được xem như mạng 3.5G. Hiện giờ, HSPDA cho phép tốc độ truyền đường xuống đạt 21 Mbps. Dài hơi hơn, một nhánh của tổ chức 3GPP lên kế hoạch phát triển mạng 4G, với tốc độ 100 Mbit/s đường xuống và 50 Mbit/s đường lên, dùng công nghệ giao diện vô tuyến dựa trên Ghép kênh tần số trực giao.
Mạng UMTS đầu tiên triển khai năm 2002 nhấn mạnh tới các ứng dụng di động như: TV di động hay thoại Video. Tuy nhiên, kinh nghiệm triển khai ở Nhật và một số nước khác cho thấy rằng, nhu cầu người dùng với thoại Video là không cao. Hiện tại, tốc độ truyền dữ liệu cao của UMTS thường dành để truy cập Internet.
Công nghệ

Một bộ phát của UMTS đặt trên nóc tòa nhà
UMTS kết hợp giao diện vô tuyến WCDMA, TD-CDMA, hay TD-SCDMA, lõi Phía ứng dụng di động của GSM (MAP), và các chuẩn mã hóa thoại của GSM.
UMTS (W-CDMA) dùng các cặp kênh 5 MHz trong kỹ thuật truyền dẫn UTRA/FDD. Ban đầu, băng tần ấn định cho UMTS là 1885–2025 MHz với đường lên (uplink) và 2110–2200 MHz cho đường xuống (downlink). Ở Mỹ, băng tần thay thế là 1710–1755 MHz (uplink) và 2110–2155 MHz (downlink), do băng tần 1900 MHz đã dùng.
UMTS là một mạng RAN (mạng truy nhập vô tuyến) thay vì GERAN như của GSM/EGDE. UMTS và GERAN có thể dùng chung mạng lõi CN, và cho phép chuyển mạch thông suốt giữa các RAN nếu cần. Mạng lõi CN có thể kết nối đến nhiều mạng đường trục khác nhau như của Internet và ISDN. UMTS (cũng như GERAN) gồm 3 lớp thấp nhất của mô hình truyền thông OSI. Lớp mạng (OSI 3) gồm giao thức Quản lý tài nguyên vô tuyến RRM, quản lý các kênh sóng mang (bearer channels) giữa máy di động và mạng.
Kiến trúc mạng UMTS


Kiến trúc mạng UMTS
Như hình vẽ thể hiện, Mạng UMTS bao gồm 2 phần, phần truy nhập vô tuyến (UMTS Terrestrial Radio Access Network – UTRAN) và phần mạng lõi (core). Phần truy nhập vô tuyến bao gồm Node B và RNC. Còn phần core thì có core cho data bao gồm SGSN, GGSN; Phần core cho voice thì có MCS và GMSC.


Chi tiết về cấu trúc UMTS
Các bạn có thể xem thêm các chuẩn 3G ở đây

Thứ Bảy, 25 tháng 2, 2012

Tổng quan về HSDPA

HSDPA là một phương thức truyền tải dữ liệu theo phương thức mới. Đây được coi là sản phầm của dòng 3.5G. công nghệ này cho phép dữ liệu download về máy điện thoại có tốc độ tương đương với tốc độ đường truyền ADSL.

1. HSDPA là gì?

HSDPA (High Speed Downlink Packet Access), gói đường truyền tốc độ cao, là một sản phẩm của công nghệ 3G cho phép các mạng hoạt động trên hệ thống UMTS có khả năng truyền tải dữ liệu với tốc độ cao hơn hẳn. Công nghệ HSDPA hiện nay cho phép tốc độ download đạt đến 1.8, 3.6, 7.2 và 14.4 Mbit/giây, và trong tương lai gần, tốc độ hiện nay có thể được nâng lên gấp nhiều lần. Khi đó, các mạng cung cấp có thể được nâng cấp thành Evolved HSPA, cho phép tốc độ download đạt đến 42 Mbit/giây. Với những ưu thế vượt trội đó, HSDPA đang trở thành một công nghệ được nhiều nhà cung cấp quan tâm phát triển.

2. Công nghệ HSDPA

HSDPA là một phương thức truyền tải dữ liệu theo phương thức mới. Đây được coi là sản phẩm của dòng 3.5G. công nghệ này cho phép dữ liệu download về máy điện thoại có tốc độ tương đương với tốc độ đường truyền ADSL, vượt qua những cản trở cố hữu về tốc độ kết nối của một chiếc điện thoại thông thường. Đây là giải pháp mang tính đột phá về mặt công nghệ và được phát triển trên cơ sở của hệ thống 3G W-CDMA.

HSDPA có tốc độ truyền tải dữ liệu lên tối đa gấp 5 lần so với khi sử dụng công nghệ W-CDMA. Về mặt lý thuyết, HSDPA có thể đạt tốc độ truyền tải dữ liệu lên tới 8-10 Mbps (Megabit/giây). Mặc dù có thể truyền tải bất cứ dạng dữ liệu nào, song mục tiêu chủ yếu của HSDPA là dữ liệu dạng video và nhạc.

HSDPA được phát triển dựa trên công nghệ W-CDMA, sử dụng các phương pháp chuyển đổi và mã hóa dữ liệu khác. Nó tạo ra một kênh truyền dữ liệu bên trong W-CDMA được gọi là HS-DSCH (High Speed Downlink Shared Channel), hay còn gọi là kênh chia sẻ đường xuống tốc độ cao. Kênh truyền tải này hoạt động hoàn toàn khác biệt so với các kênh thông thường và cho phép thực hiện download với tốc độ vượt trội. Và đây là một kênh chuyên dụng cho việc download. Điều đó cũng có nghĩa là dữ liệu sẽ được truyền trực tiếp từ nguồn đến điện thoại. Song quá trình ngược lại, tức là truyền dữ liệu từ điện thoại đến một nguồn tin thì không thể thực hiện được khi sử dụng công nghệ HSDPA. Công nghệ này có thể được chia sẻ giữa tất cả các user có sử dụng sóng radio, sóng cho hiệu quả download nhanh nhất.

Ngoài HS-DSCH, còn có 3 kênh truyền tải dữ liệu khác cũng được phát triển, gồm có HS-SCCH (High Speed Shared Control Channel – kênh điều khiển dùng chung tốc độ cao), HS-DPCCH (High Speed Dedicated Physical Control Channel – kênh điều khiển vật lý dành riêng tốc độ cao) và HS-PDSCH (High Speed Downlink Shared Channel – kênh vật lý chia sẻ đường xuống tốc độ cao). Kênh HS-SCCH thông báo cho người sử dụng về thông tin dữ liệu sẽ được gửi vào các cổng HS-DSCH.

Trong năm 2007, một số lượng lớn các nhà cung cấp dịch vụ di động trên toàn thế giới đã bắt đầu bán các sản phẩm USB Modem có chức năng kết nối di động băng thông rộng. Ngoài ra, số lượng các trạm thu phát HSDPA trên mặt đất cũng tăng nhanh để đáp ứng nhu cầu thu phát dữ liệu. Được giới thiệu là có “tốc độ lên tới 3.6 Mbit/giây”, song đây chỉ là con số có thể đạt được trong điều kiện lý tưởng. Do vậy, tốc độ đường truyền sẽ không nhanh như mong đợi, đặc biệt là trong điều kiện phòng kín.

3. Sự phát triển và tương lai của công nghệ HSDPA

Chính thức được đưa vào hoạt động lần đầu tiên vào năm 2005, tính đến cuối năm 2006 đã có 19 nhà cung cấp 66 sản phẩm ứng dụng công nghệ HSDPA, trong đó có 32 sản phẩm điện thoại di động.

Với những cải tiến mang tính đột phá, HSDPA là một công nghệ đang được chú trọng phát triển. Trên thực tế, thị trường của HSDPA phát triển mạnh mẽ nhất, đặc biệt là ở giai đoạn khởi đầu, là ở những nước phát triển, nơi có lượng khách hàng khổng lồ sử dụng điện thoại di động chất lượng cao. Lý do là vì những chiếc điện thoại HSDPA sẽ có giá thành cao hơn hẳn những chiếc điện thoại thông thường – được nhắm vào thị trường những nước phát triển thấp hơn.

Nhu cầu sử dụng điện thoại HSDPA được mong đợi là sẽ đạt con số 2100 sản phẩm tính đến cuối năm nay. Đến năm 2010, con số này có thể là 100 triệu chiếc, theo phân tích của IDC. Hơn nữa, theo Strategic Analytics, đến năm 2010, 70% điện thoại 3G sẽ sử dụng HSDPA.

Tuy nhiên, sẽ mất nhiều thời gian để HSDPA thực sự trở nên phổ biến. Tính đến cuối năm 2005, hầu hết các nước trên thế giới không có mạng 3G. Rất nhiều nhà cung cấp dịch vụ di động đang cố gắng triển khai mạng 3G và có thể được nâng cấp thành mạng 3.5G theo nhu cầu của thị trường.

Xét về lâu dài, tương lai và sự thành công của công nghệ HSDPA vẫn còn khá mù mờ, bởi đây không phải là công nghệ download và truyền tải dữ liệu duy nhất được phát triển tại thời điểm này. Hơn nữa, những công nghệ truyền thống như CDMA2000 1xEV-DO và WiMax đang là những chuẩn công nghệ có nhiều triển vọng hơn. Do là một phiên bản nâng cấp của W-CDMA, HSDPA không có nhiều khả năng thành công tại những nơi mà W-CDMA đã được phát triển. Do đó, thành công cuối cùng của HSDPA như một sản phẩm của công nghệ 3.5G sẽ phụ thuộc rất nhiều vào sự thành công của W-CDMA với tư cách là một sản phẩm của công nghệ 3G.


Bài này được viết vào năm 2007, hiện HSDPA đã phát triển khá mạnh và có nhiều thiết bị hỗ trợ rồi

HSPA lịch sử hình thành và chuẩn

High Speed Downlink Packet Access (HSDPA) lần đầu được giới thiệu năm 2002 trong phiên bản 5 và High Speed Uplink Packet Access (HSUPA) năm 2004 trong phiên bản 6 của dự án hợp tác thế hệ thứ 3 – 3rd generation partnership project (3GPP). HSDPA và HSUPA gọi chung là High Speed Packet Access (HSPA). 3GPP ra đời vào tháng 12 năm 1998 bằng việc kí kết hợp tác giữa các tổ chức chuẩn và các công ty, đơn vị liên quan để đưa ra chuẩn chung trên toàn cầu cho công nghệ và truy nhập vô tuyến của hệ thống di động thế hệ thứ 3 (3G) phát triển từ GSM. Bên cạnh đó còn có 3GPP2 là dự án dành cho hệ thống di động 3G phát triển từ CDMA. Trang chủ của 3GPP là: http://www.3gpp.org

Cấu trúc bên trong của 3GPP

  • TSG RAN (Radio Access Network): tập trung vào giao tiếp vô tuyến và giao tiếp bên trong giữa các between Base Transceiver Stations (BTSs) và các Radio Network Controllers (RNCs) cũng như giao tiếp giữa RNC và mạng lõi [1]. Các chuẩn về HSDPA và HSUPA là do TSG RAN qui định.
  • TSG GERAN (GSM/EDGE RAN): cũng giải quyết các vấn đề giống TSG RAN nhưng cho các giao tiếp vô tuyến dựa trên công nghệ GSM/GPRS/EDGE.
  • TSG SA (services and system architecture): tập trung vào dịch vụ và kiến trúc hệ thống.
  • TSG CT (core and terminals): tập trung vào các vấn đề trong mạng lõi.

Các tài liệu của 3GPP được xuất bản 4 lần một năm bởi các hội nghị của TSG. Các văn bản này có thể download miễn phí. Phiên bản đầu tiên năm 1999 gọi là phiên bản 99 (Release 99) là bản mô tả đầy đủ đầu tiên về WCDMA [1]. Sau đó là từ phiên bản 4 năm 2001 đến phiên bản 11 năm 2011 đang được nghiên cứu, mỗi phiên bản cách nhau khoảng hơn một năm.


Hệ thống chuẩn 3GPP, xét các chuẩn liên quan đến HSPA:

Như chúng ta đã biết, chuẩn của [ITU-T] được sắp xếp theo nội dung. Ví dụ: chuẩn G là về môi trường và hệ thống truyền dẫn, mạng và hệ thống số. Trong đó G. 692 là chuẩn về các giao tiếp quang cho hệ thống đa kênh với khuếch đại quang. Tuy nhiên, hệ thống chuẩn 3GPP lại được xếp theo năm phát hành. Ví dụ phiên bản 99 phát hành năm 1999 và nội dung gồm các vấn đề đã và đang được nghiên cứu tại thời điểm đó. Các vấn đề này được các hội nghị của TSG quyết định có đưa vào phiên bản được phát hành hay không. Sau đó các phiên bản lại tiếp tục được chỉnh sửa và phát hành nhưng do có cùng nội dung chính đã được phát hành nên vẫn giữ tên phiên bản cũ. Ví dụ: có một số văn bản thuộc phiên bản 99 được chỉnh sửa và phát hành năm 2009 và năm 2010. Bản tóm tắt các nội dung chính trong các phiên bản có thể được tải về từ địa chỉ: http://www.3gpp.org/ftp/Information/WORK_PLAN/Work_plan_3gpp_110401.zip
ID Unique_ID Name Acronym Outline_Level Release
221 0 Release 10 Features - 1 Rel-10
222 390073 Enhancements for Multimedia Priority Service eMPS 1 Rel-10
223 390074 Stage 1 on enhancements for Multimedia Priority Service ePRIOR 2 Rel-10
224 460029 Stage 2 on enhancements for Multimedia Priority Service eMPS 2 Rel-10
225 460329 Stage 2 on eMPS for CSFB eMPS 3 Rel-10
226 460429 Stage 2 on eMPS for EPS Bearer Service eMPS 3 Rel-10
227 460529 Stage 2 on eMPS for IMS Aspects eMPS 3 Rel-10

Trên đây là một phần bảng tóm tắt để minh họa. Trong đó có các cột như số ID, tên nội dung, từ viết tắt của nội dung đó, cấp độ của nội dung (nội dung cấp 2 nằm trong nội dung cấp 1), phiên bản được phát hành. Ngoài ra còn có các cột như thời gian bắt đầu, kết thúc, % hoàn thành…
Toàn bộ kho lưu trữ các văn bản được phát hành của 3GPP là tại địa chỉ: http://www.3gpp.org/ftp/. Trong đó bao gồm các văn bản giới thiệu và các phần thuộc các TSG khác nhau, đặc biệt là các văn bản trong mục Specs. Trong mục Specs là các tài liệu được phát hành 4 lần 1 năm như đã nói ở trên. Mỗi lần phát hành, không chỉ có các phiên bản tại thời điểm đó mà còn có các phiên bản khác được sửa đổi. Trong các phiên bản có các series (các chuỗi). Ví dụ: http://www.3gpp.org/ftp/Specs/2002-06/Rel-5/21_series/21103-500.zip. Trong các tài liệu phát hành tháng 06 năm 2002 có phiên bản 5. Trong phiên bản 5 có series 21 gồm các văn bản có 2 số đầu là 21 ví dụ TS 21.103.

HSDPA:

Khi công nghệ WCDMA ra đời, các phiên bản 99 và 4 tập trung nghiên cứu về nó. Trong quá trình đó người ta nảy sinh ý tưởng về việc cải tiến truy nhập gói nhằm đáp ứng yêu cầu không ngừng gia tăng về tốc độ truyền dữ liệu. Tháng 3 năm 2000, dưới sự tài trợ của các công ty viễn thông , quá trình nghiên cứu HSDPA khởi động trong khuôn khổ của 3GPP. Khi phiên bản 5 được xuất bản, ghi rõ về cơ bản các yêu cầu cho HSDPA gồm:

  • HSDPA-IubIur (giao tiếp Iub kết nối Node B (RBS) and RNC): mô tả UTRAN (Universal Terrestrial Radio Access Network) và giao tiếp UTRAN Iur
  • HSDPA-IurIub: giao thức Radio Access Network Application Part (RANAP) cho giao tiếp UTRAN Iu
  • HSDPA-L23: các giao thức lớp 2 và lớp 3
  • HSDPA-RF: các vấn đề liên quan đến thiết bị người dùng User Equipment ([UE]) và trạm gốc Base Station ([BS]) sừ dụng truyền song công phân chia theo thời gian Time Division Duplex ([TDD]) và truyền song công phân chia theo tần số Frequency Division Duplex ([FDD]).

HSDPA cho phép tốc độ dữ liệu ban đầu là 1.8Mbps, tăng lên 3.6Mbps rồi 7.2Mbps và cuối cùng lên đến 14Mbps. Nó được thiết kế nhằm đáp ứng các dịch vụ có tốc độ đường xuống lớn và tốc độ đường lên nhỏ [3]. Có thể coi HSDPA là ADSL không dây. Do tốc độ dữ liệu như trên, ban đầu HSDPA chỉ được thiết kế cho dữ liệu tốc độ cao nhưng chưa thể đáp ứng thời gian thực. Các ứng dụng có thể có như: lướt Web, xem phim. Các cải tiến về sau cho phép cung cấp thêm VoIP (tốc độ thấp nhưng cần đáp ứng nhanh). Phiên bản 5 HSDPA kế thừa các kĩ thuật cho dữ liệu đường xuống tốc độ cao của phiên bản 4 [3]. Ngoài ra các kĩ thuật mới cũng được nghiên cứu như:
  • tập trung vào các dịch vụ nền tảng tương tác thông suốt
  • phân phối ưu tiên khu vực đô thị và trong nhà (indoor), nhưng không giới hạn chỉ trong các khu vực này mà hoàn toàn cho phép di chuyển
  • kết hợp với anten kĩ thuật thu tiên tiến
  • đáp ứng yêu cầu ghi nhớ và thời gian xử lí của thiết bị người dùng User Equipment (UE)
Giảm thiểu các thay đổi trong kiến trúc và kĩ thuật đang sử dụng [3]. Yêu cầu này nhằm đảm bảo độ tương thích giữa hệ thống cũ và mới.
Các kĩ thuật sau đã được đưa ra:
  • Mã hóa và điều chế tương tác Adaptive Modulation and Coding (AMC)
  • Cơ chế lai yêu cầu tự động truyền lại Hybrid Automatic Retransmission Query (Hybrid ARQ)
  • Chọn lựa cell nhanh Fast Cell Selection (FCS)
  • Xử lí bằng anten Multiple Input Multiple Output (MIMO)
  • Kênh truyền chia sẻ đường xuống riêng Standalone Downlink Shared CHannel (Standalone DSCH) [3].
AMC và Hybrid ARQ được đưa ra trong phiên bản 5 HSDPA. MIMO được giới thiệu trong phiên bản 6 nhưng vẫn tiếp tục được nghiên cứu cho đến ngày nay. FCS và Standalone DSCH được đánh giá là không mang lại hiệu quả cao nên đã không được ứng dụng sau khi nghiên cứu, tuy nhiên chúng vẫn có thể được sử dụng sau này.
1.Kiến trúc phân lớp:
Như đã nói ở trên, HSDPA sử dụng cả FDD và TDD nghĩa là có thể có nhiều kênh tần số và nhiều khe thời gian để truyền dữ liệu. Kĩ thuật DSCH trong phiên bản 99 được phát triển thành High Speed-Downlink Shared CHannel (HS-DSCH). HS-DSCH kết hợp với DPCH là thủ tục chính được sử dụng trong HSDPA. Đối với chiều xuống, có kênh truyền dữ liệu mới đó là (HS-PDSCH) và kênh điều khiển (HS-SCCH). Đối với đường lên, kênh truyền mới là HS-DPCCH theo chuẩn DPCCH. Một đặc điểm chính của HSDPA là tính thích nghi của đường truyền: cơ chế truyền thay đổi theo từng Transmission Time Interval (TTI) thích nghi với điều kiện đường truyền [3].
Cơ chế hybrid ARQ thuộc lớp 2 tức lớp Medium Access Control (MAC).Theo hình vẽ ta thấy:
  • Tại RNC có 2 giao thức: có hoặc không có thêm lớp MAC-c/sh.
  • Tại Node-B có thêm giao thức MAC-hs
Với đường xuống, chỉ thị HS-DSCH, HS-DSCH Indicator (HI) được DPCH mang theo trỏ vào kênh mà UE cần giải mã. Trong quá trình UE giải mã HS-DSCH TTI, UE sẽ được kênh HS-SCCH cấp cho mã sử dụng trong HS-DSCH TTI và các thông tin kèm theo. Với đường lên,tín hiệu bao gồm ACK cho Hybrid ARQ và thông tin về điều kiện kênh truyền. Cơ chế HS-DPCCH được sử dụng cũng giống như DPCH [3].
HS-DSCH có nhiều loại tùy thuộc vào dung lượng của UE.
2.Mã hóa và điều chế thích nghi Adaptive Modulation and Coding (AMC):
Quá trình mã hóa và điều chế trong HSDPA thích nghi theo đường truyền. Khi UE gửi các đo đạc về đường truyền xuống trong luồng dữ liệu lên, Node-B tính toán và quyết định chọn phương thức mã hóa và điều chế nào phù hợp cho TTI. Nếu đường truyền xấu thì vẫn sử dụng Quadrature Phase Shift Keying (QPSK) như trong phiên bản 99 để đảm bảo chất lượng. Nếu đường truyền tốt thì có thể tăng số mức điều chế lên, ví dụ: 16 Quadrature Amplitude Modulation (16-QAM), nhằm tăng tốc độ. Đây là phần cải tiến trong phiên bản 5. Theo phiên bản 99, mọi quá trình đều do RNC điều khiển. Tuy nhiên như vậy sẽ làm tăng thời gian đáp ứng và giảm hiệu quả khi tính toán đối với kênh truyền thay đổi. Chính vì vậy trong phiên bản 5, các quá trình tính toán thời gian đã chuyển xuống cho Node-B đảm nhiệm.
3.Cơ chế lai yêu cầu truyền lại tự động Hybrid ARQ:
ARQ là cơ chế phát hiện lỗi như sau: bên phát gửi một gói tin và chờ bên nhận gửi xác nhận đã nhận được rồi gửi tiếp(Stop And Wait – SAW), nếu sau một khoảng thời gian không nhận được thì tự động gửi lại. Cơ chế Hybrid ARQ là sự kết hợp giữa ARQ và Forward Error Correction (FEC). Các gói sai được giữ lại để kết hợp với các gói truyền lại và giải mã. Có các loại: Code Combining, Incremental Redundancy (IR), Chase combining[3]. HSDPA sử dụng IR và Chase combining.

HSUPA:

Các sách thường viết rằng HSUPA được giới thiệu trong phiên bản 6 của 3GPP. Tuy nhiên, trong phiên bản 6 hầu như không thấy nhắc đến HSUPA. Nguyên nhân là do HSUPA là tên gọi thông thường, khi mới ra đời trong phiên bản 6 nó được biết đến với tên gọi Enhanced Uplink Dedicated Channel (E-DCH) .
Các kĩ thuật chính được nghiên cứu cho HSUPA:
  • AMC
  • Hybrid ARQ
  • Quá trình phân chia thời gian tại Node-B
  • Cải tiến các lớp trong kiến trúc phân lớp
  • Fast DCH
Sau một thời gian nghiên cứu thì một số kĩ thuật trên được coi là không khả thi và mang lại lợi nhuận nên chỉ có các kĩ thuật sau được áp dụng:
  • Giảm TTI: có khả năng 2ms
  • Cơ chế phân chia thời gian của Node-B: Node-B sẽ quản lí transport format combinations (TFCs) và UE sẽ chọn một TFC phù hợp [4].
  • HARQ: cơ chế yêu cầu truyền lại lai
Bên cạnh đó 3GPP cũng nghiên cứu ‘FDD enhanced uplink’ để áp dụng cho HSUPA và được chia làm các phần sau:
  • FDD Enhanced Uplink: lớp vật lí
  • FDD Enhanced Uplink: giao thức lớp 2 và lớp 3
  • FDD Enhanced Uplink: giao thức cho UTRAN Iub/Iur
  • FDD Enhanced Uplink: yêu cầu và kiểm tra chất lượng hệ thống, thu phát sóng vô tuyến[4].
Kĩ thuật TDD thì được nghiên cứu và áp dụng sau đó trong phiên bản 7.
  • FDD Enhanced Uplink: lớp vật lí gồm các nghiên cứu về các vấn đề sau:
    • Liên kết giữa kênh truyền và kênh vật lí
    • Mã hóa kênh và ghép kênh
    • Các thủ tục
    • Đo đạc các thông số
    • Dung lượng
  • FDD Enhanced Uplink: giao thức lớp 2 và lớp 3:


Để cải tiến đường truyền lên, người ta thay đổi các thủ tục trong mô hình phân lớp như sau:
    • Tại UE: một lớp MAC mới (MAC-es/MAC-e) được thêm vào dưới lớp MAC-d. MAC- es/MAC-e đảm nhận thực hiện việc truyền lại theo HARQ, phân định thời gian và MAC-e cũng thực hiện ghép kênh, chọn lựa TFC.
    • Tại Node B: tương tự để có thể giao tiếp giữa Node-B và UE thì tại Node-B một MAC-e cũng được thêm vào và thực hiện chức năng tương tự như tại UE: thực hiện việc truyền lại theo HARQ, phân định thời gian và tách kênh.
    • Tại S-RNC: tương ứng với lớp MAC-es tại UE thì S-RNC cũng được thêm vào lớp MAC-es để có thể đóng và mở các gói dữ liệu từ các Node-B trong quá trình chuyển giao mềm.
  • FDD Enhanced Uplink: giao thức cho UTRAN Iub/Iur
Đường lên cũng được cải tiến bằng cách thay đổi kịch bản giao tiếp UTRAN Iub/Iur:một UE thực hiện Soft Hand Over (SHO) với 2 Node-B và được quản lí bởi RNC.
FDD Enhanced Uplink: yêu cầu và kiểm tra chất lượng hệ thống, thu phát sóng vô tuyến.[4]
Để tăng chất lượng đường truyền người ta thực hiện các cải tiến ở các mặt sau:
    • Truyền nhận vô tuyến giữa các UE
    • Truyền nhận vô tuyến giữa các Base Station
    • Kiểm tra chất lượng các Base Station
    • Yêu cầu về quản lí tài nguyên vô tuyến

KẾT LUẬN:

Tóm lại, trong quá trình nghiên cứu hệ thống chuẩn của HSDPA và HSUPA, 3GPP đã đưa ra rất nhiều cải tiến nhằm tăng tốc độ truyền dẫn và đảm bảo chất lượng. Tuy nhiên, hệ thống chuẩn này rất chi tiết và phức tạp, nên trong bài viết này chỉ có thể trình bày các ý tưởng chính. Các thông tin chi tiết có thể được tải về từ trang chủ của 3GPP.

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Design by NewWpThemes | Blogger Theme by Lasantha - Premium Blogger Themes | New Blogger Themes