Tìm kiếm nhanh và chính xác hơn với google tùy chỉnh

Thứ Bảy, 25 tháng 2, 2012

Tổng quan về HSDPA

HSDPA là một phương thức truyền tải dữ liệu theo phương thức mới. Đây được coi là sản phầm của dòng 3.5G. công nghệ này cho phép dữ liệu download về máy điện thoại có tốc độ tương đương với tốc độ đường truyền ADSL.

1. HSDPA là gì?

HSDPA (High Speed Downlink Packet Access), gói đường truyền tốc độ cao, là một sản phẩm của công nghệ 3G cho phép các mạng hoạt động trên hệ thống UMTS có khả năng truyền tải dữ liệu với tốc độ cao hơn hẳn. Công nghệ HSDPA hiện nay cho phép tốc độ download đạt đến 1.8, 3.6, 7.2 và 14.4 Mbit/giây, và trong tương lai gần, tốc độ hiện nay có thể được nâng lên gấp nhiều lần. Khi đó, các mạng cung cấp có thể được nâng cấp thành Evolved HSPA, cho phép tốc độ download đạt đến 42 Mbit/giây. Với những ưu thế vượt trội đó, HSDPA đang trở thành một công nghệ được nhiều nhà cung cấp quan tâm phát triển.

2. Công nghệ HSDPA

HSDPA là một phương thức truyền tải dữ liệu theo phương thức mới. Đây được coi là sản phẩm của dòng 3.5G. công nghệ này cho phép dữ liệu download về máy điện thoại có tốc độ tương đương với tốc độ đường truyền ADSL, vượt qua những cản trở cố hữu về tốc độ kết nối của một chiếc điện thoại thông thường. Đây là giải pháp mang tính đột phá về mặt công nghệ và được phát triển trên cơ sở của hệ thống 3G W-CDMA.

HSDPA có tốc độ truyền tải dữ liệu lên tối đa gấp 5 lần so với khi sử dụng công nghệ W-CDMA. Về mặt lý thuyết, HSDPA có thể đạt tốc độ truyền tải dữ liệu lên tới 8-10 Mbps (Megabit/giây). Mặc dù có thể truyền tải bất cứ dạng dữ liệu nào, song mục tiêu chủ yếu của HSDPA là dữ liệu dạng video và nhạc.

HSDPA được phát triển dựa trên công nghệ W-CDMA, sử dụng các phương pháp chuyển đổi và mã hóa dữ liệu khác. Nó tạo ra một kênh truyền dữ liệu bên trong W-CDMA được gọi là HS-DSCH (High Speed Downlink Shared Channel), hay còn gọi là kênh chia sẻ đường xuống tốc độ cao. Kênh truyền tải này hoạt động hoàn toàn khác biệt so với các kênh thông thường và cho phép thực hiện download với tốc độ vượt trội. Và đây là một kênh chuyên dụng cho việc download. Điều đó cũng có nghĩa là dữ liệu sẽ được truyền trực tiếp từ nguồn đến điện thoại. Song quá trình ngược lại, tức là truyền dữ liệu từ điện thoại đến một nguồn tin thì không thể thực hiện được khi sử dụng công nghệ HSDPA. Công nghệ này có thể được chia sẻ giữa tất cả các user có sử dụng sóng radio, sóng cho hiệu quả download nhanh nhất.

Ngoài HS-DSCH, còn có 3 kênh truyền tải dữ liệu khác cũng được phát triển, gồm có HS-SCCH (High Speed Shared Control Channel – kênh điều khiển dùng chung tốc độ cao), HS-DPCCH (High Speed Dedicated Physical Control Channel – kênh điều khiển vật lý dành riêng tốc độ cao) và HS-PDSCH (High Speed Downlink Shared Channel – kênh vật lý chia sẻ đường xuống tốc độ cao). Kênh HS-SCCH thông báo cho người sử dụng về thông tin dữ liệu sẽ được gửi vào các cổng HS-DSCH.

Trong năm 2007, một số lượng lớn các nhà cung cấp dịch vụ di động trên toàn thế giới đã bắt đầu bán các sản phẩm USB Modem có chức năng kết nối di động băng thông rộng. Ngoài ra, số lượng các trạm thu phát HSDPA trên mặt đất cũng tăng nhanh để đáp ứng nhu cầu thu phát dữ liệu. Được giới thiệu là có “tốc độ lên tới 3.6 Mbit/giây”, song đây chỉ là con số có thể đạt được trong điều kiện lý tưởng. Do vậy, tốc độ đường truyền sẽ không nhanh như mong đợi, đặc biệt là trong điều kiện phòng kín.

3. Sự phát triển và tương lai của công nghệ HSDPA

Chính thức được đưa vào hoạt động lần đầu tiên vào năm 2005, tính đến cuối năm 2006 đã có 19 nhà cung cấp 66 sản phẩm ứng dụng công nghệ HSDPA, trong đó có 32 sản phẩm điện thoại di động.

Với những cải tiến mang tính đột phá, HSDPA là một công nghệ đang được chú trọng phát triển. Trên thực tế, thị trường của HSDPA phát triển mạnh mẽ nhất, đặc biệt là ở giai đoạn khởi đầu, là ở những nước phát triển, nơi có lượng khách hàng khổng lồ sử dụng điện thoại di động chất lượng cao. Lý do là vì những chiếc điện thoại HSDPA sẽ có giá thành cao hơn hẳn những chiếc điện thoại thông thường – được nhắm vào thị trường những nước phát triển thấp hơn.

Nhu cầu sử dụng điện thoại HSDPA được mong đợi là sẽ đạt con số 2100 sản phẩm tính đến cuối năm nay. Đến năm 2010, con số này có thể là 100 triệu chiếc, theo phân tích của IDC. Hơn nữa, theo Strategic Analytics, đến năm 2010, 70% điện thoại 3G sẽ sử dụng HSDPA.

Tuy nhiên, sẽ mất nhiều thời gian để HSDPA thực sự trở nên phổ biến. Tính đến cuối năm 2005, hầu hết các nước trên thế giới không có mạng 3G. Rất nhiều nhà cung cấp dịch vụ di động đang cố gắng triển khai mạng 3G và có thể được nâng cấp thành mạng 3.5G theo nhu cầu của thị trường.

Xét về lâu dài, tương lai và sự thành công của công nghệ HSDPA vẫn còn khá mù mờ, bởi đây không phải là công nghệ download và truyền tải dữ liệu duy nhất được phát triển tại thời điểm này. Hơn nữa, những công nghệ truyền thống như CDMA2000 1xEV-DO và WiMax đang là những chuẩn công nghệ có nhiều triển vọng hơn. Do là một phiên bản nâng cấp của W-CDMA, HSDPA không có nhiều khả năng thành công tại những nơi mà W-CDMA đã được phát triển. Do đó, thành công cuối cùng của HSDPA như một sản phẩm của công nghệ 3.5G sẽ phụ thuộc rất nhiều vào sự thành công của W-CDMA với tư cách là một sản phẩm của công nghệ 3G.


Bài này được viết vào năm 2007, hiện HSDPA đã phát triển khá mạnh và có nhiều thiết bị hỗ trợ rồi

HSPA lịch sử hình thành và chuẩn

High Speed Downlink Packet Access (HSDPA) lần đầu được giới thiệu năm 2002 trong phiên bản 5 và High Speed Uplink Packet Access (HSUPA) năm 2004 trong phiên bản 6 của dự án hợp tác thế hệ thứ 3 – 3rd generation partnership project (3GPP). HSDPA và HSUPA gọi chung là High Speed Packet Access (HSPA). 3GPP ra đời vào tháng 12 năm 1998 bằng việc kí kết hợp tác giữa các tổ chức chuẩn và các công ty, đơn vị liên quan để đưa ra chuẩn chung trên toàn cầu cho công nghệ và truy nhập vô tuyến của hệ thống di động thế hệ thứ 3 (3G) phát triển từ GSM. Bên cạnh đó còn có 3GPP2 là dự án dành cho hệ thống di động 3G phát triển từ CDMA. Trang chủ của 3GPP là: http://www.3gpp.org

Cấu trúc bên trong của 3GPP

  • TSG RAN (Radio Access Network): tập trung vào giao tiếp vô tuyến và giao tiếp bên trong giữa các between Base Transceiver Stations (BTSs) và các Radio Network Controllers (RNCs) cũng như giao tiếp giữa RNC và mạng lõi [1]. Các chuẩn về HSDPA và HSUPA là do TSG RAN qui định.
  • TSG GERAN (GSM/EDGE RAN): cũng giải quyết các vấn đề giống TSG RAN nhưng cho các giao tiếp vô tuyến dựa trên công nghệ GSM/GPRS/EDGE.
  • TSG SA (services and system architecture): tập trung vào dịch vụ và kiến trúc hệ thống.
  • TSG CT (core and terminals): tập trung vào các vấn đề trong mạng lõi.

Các tài liệu của 3GPP được xuất bản 4 lần một năm bởi các hội nghị của TSG. Các văn bản này có thể download miễn phí. Phiên bản đầu tiên năm 1999 gọi là phiên bản 99 (Release 99) là bản mô tả đầy đủ đầu tiên về WCDMA [1]. Sau đó là từ phiên bản 4 năm 2001 đến phiên bản 11 năm 2011 đang được nghiên cứu, mỗi phiên bản cách nhau khoảng hơn một năm.


Hệ thống chuẩn 3GPP, xét các chuẩn liên quan đến HSPA:

Như chúng ta đã biết, chuẩn của [ITU-T] được sắp xếp theo nội dung. Ví dụ: chuẩn G là về môi trường và hệ thống truyền dẫn, mạng và hệ thống số. Trong đó G. 692 là chuẩn về các giao tiếp quang cho hệ thống đa kênh với khuếch đại quang. Tuy nhiên, hệ thống chuẩn 3GPP lại được xếp theo năm phát hành. Ví dụ phiên bản 99 phát hành năm 1999 và nội dung gồm các vấn đề đã và đang được nghiên cứu tại thời điểm đó. Các vấn đề này được các hội nghị của TSG quyết định có đưa vào phiên bản được phát hành hay không. Sau đó các phiên bản lại tiếp tục được chỉnh sửa và phát hành nhưng do có cùng nội dung chính đã được phát hành nên vẫn giữ tên phiên bản cũ. Ví dụ: có một số văn bản thuộc phiên bản 99 được chỉnh sửa và phát hành năm 2009 và năm 2010. Bản tóm tắt các nội dung chính trong các phiên bản có thể được tải về từ địa chỉ: http://www.3gpp.org/ftp/Information/WORK_PLAN/Work_plan_3gpp_110401.zip
ID Unique_ID Name Acronym Outline_Level Release
221 0 Release 10 Features - 1 Rel-10
222 390073 Enhancements for Multimedia Priority Service eMPS 1 Rel-10
223 390074 Stage 1 on enhancements for Multimedia Priority Service ePRIOR 2 Rel-10
224 460029 Stage 2 on enhancements for Multimedia Priority Service eMPS 2 Rel-10
225 460329 Stage 2 on eMPS for CSFB eMPS 3 Rel-10
226 460429 Stage 2 on eMPS for EPS Bearer Service eMPS 3 Rel-10
227 460529 Stage 2 on eMPS for IMS Aspects eMPS 3 Rel-10

Trên đây là một phần bảng tóm tắt để minh họa. Trong đó có các cột như số ID, tên nội dung, từ viết tắt của nội dung đó, cấp độ của nội dung (nội dung cấp 2 nằm trong nội dung cấp 1), phiên bản được phát hành. Ngoài ra còn có các cột như thời gian bắt đầu, kết thúc, % hoàn thành…
Toàn bộ kho lưu trữ các văn bản được phát hành của 3GPP là tại địa chỉ: http://www.3gpp.org/ftp/. Trong đó bao gồm các văn bản giới thiệu và các phần thuộc các TSG khác nhau, đặc biệt là các văn bản trong mục Specs. Trong mục Specs là các tài liệu được phát hành 4 lần 1 năm như đã nói ở trên. Mỗi lần phát hành, không chỉ có các phiên bản tại thời điểm đó mà còn có các phiên bản khác được sửa đổi. Trong các phiên bản có các series (các chuỗi). Ví dụ: http://www.3gpp.org/ftp/Specs/2002-06/Rel-5/21_series/21103-500.zip. Trong các tài liệu phát hành tháng 06 năm 2002 có phiên bản 5. Trong phiên bản 5 có series 21 gồm các văn bản có 2 số đầu là 21 ví dụ TS 21.103.

HSDPA:

Khi công nghệ WCDMA ra đời, các phiên bản 99 và 4 tập trung nghiên cứu về nó. Trong quá trình đó người ta nảy sinh ý tưởng về việc cải tiến truy nhập gói nhằm đáp ứng yêu cầu không ngừng gia tăng về tốc độ truyền dữ liệu. Tháng 3 năm 2000, dưới sự tài trợ của các công ty viễn thông , quá trình nghiên cứu HSDPA khởi động trong khuôn khổ của 3GPP. Khi phiên bản 5 được xuất bản, ghi rõ về cơ bản các yêu cầu cho HSDPA gồm:

  • HSDPA-IubIur (giao tiếp Iub kết nối Node B (RBS) and RNC): mô tả UTRAN (Universal Terrestrial Radio Access Network) và giao tiếp UTRAN Iur
  • HSDPA-IurIub: giao thức Radio Access Network Application Part (RANAP) cho giao tiếp UTRAN Iu
  • HSDPA-L23: các giao thức lớp 2 và lớp 3
  • HSDPA-RF: các vấn đề liên quan đến thiết bị người dùng User Equipment ([UE]) và trạm gốc Base Station ([BS]) sừ dụng truyền song công phân chia theo thời gian Time Division Duplex ([TDD]) và truyền song công phân chia theo tần số Frequency Division Duplex ([FDD]).

HSDPA cho phép tốc độ dữ liệu ban đầu là 1.8Mbps, tăng lên 3.6Mbps rồi 7.2Mbps và cuối cùng lên đến 14Mbps. Nó được thiết kế nhằm đáp ứng các dịch vụ có tốc độ đường xuống lớn và tốc độ đường lên nhỏ [3]. Có thể coi HSDPA là ADSL không dây. Do tốc độ dữ liệu như trên, ban đầu HSDPA chỉ được thiết kế cho dữ liệu tốc độ cao nhưng chưa thể đáp ứng thời gian thực. Các ứng dụng có thể có như: lướt Web, xem phim. Các cải tiến về sau cho phép cung cấp thêm VoIP (tốc độ thấp nhưng cần đáp ứng nhanh). Phiên bản 5 HSDPA kế thừa các kĩ thuật cho dữ liệu đường xuống tốc độ cao của phiên bản 4 [3]. Ngoài ra các kĩ thuật mới cũng được nghiên cứu như:
  • tập trung vào các dịch vụ nền tảng tương tác thông suốt
  • phân phối ưu tiên khu vực đô thị và trong nhà (indoor), nhưng không giới hạn chỉ trong các khu vực này mà hoàn toàn cho phép di chuyển
  • kết hợp với anten kĩ thuật thu tiên tiến
  • đáp ứng yêu cầu ghi nhớ và thời gian xử lí của thiết bị người dùng User Equipment (UE)
Giảm thiểu các thay đổi trong kiến trúc và kĩ thuật đang sử dụng [3]. Yêu cầu này nhằm đảm bảo độ tương thích giữa hệ thống cũ và mới.
Các kĩ thuật sau đã được đưa ra:
  • Mã hóa và điều chế tương tác Adaptive Modulation and Coding (AMC)
  • Cơ chế lai yêu cầu tự động truyền lại Hybrid Automatic Retransmission Query (Hybrid ARQ)
  • Chọn lựa cell nhanh Fast Cell Selection (FCS)
  • Xử lí bằng anten Multiple Input Multiple Output (MIMO)
  • Kênh truyền chia sẻ đường xuống riêng Standalone Downlink Shared CHannel (Standalone DSCH) [3].
AMC và Hybrid ARQ được đưa ra trong phiên bản 5 HSDPA. MIMO được giới thiệu trong phiên bản 6 nhưng vẫn tiếp tục được nghiên cứu cho đến ngày nay. FCS và Standalone DSCH được đánh giá là không mang lại hiệu quả cao nên đã không được ứng dụng sau khi nghiên cứu, tuy nhiên chúng vẫn có thể được sử dụng sau này.
1.Kiến trúc phân lớp:
Như đã nói ở trên, HSDPA sử dụng cả FDD và TDD nghĩa là có thể có nhiều kênh tần số và nhiều khe thời gian để truyền dữ liệu. Kĩ thuật DSCH trong phiên bản 99 được phát triển thành High Speed-Downlink Shared CHannel (HS-DSCH). HS-DSCH kết hợp với DPCH là thủ tục chính được sử dụng trong HSDPA. Đối với chiều xuống, có kênh truyền dữ liệu mới đó là (HS-PDSCH) và kênh điều khiển (HS-SCCH). Đối với đường lên, kênh truyền mới là HS-DPCCH theo chuẩn DPCCH. Một đặc điểm chính của HSDPA là tính thích nghi của đường truyền: cơ chế truyền thay đổi theo từng Transmission Time Interval (TTI) thích nghi với điều kiện đường truyền [3].
Cơ chế hybrid ARQ thuộc lớp 2 tức lớp Medium Access Control (MAC).Theo hình vẽ ta thấy:
  • Tại RNC có 2 giao thức: có hoặc không có thêm lớp MAC-c/sh.
  • Tại Node-B có thêm giao thức MAC-hs
Với đường xuống, chỉ thị HS-DSCH, HS-DSCH Indicator (HI) được DPCH mang theo trỏ vào kênh mà UE cần giải mã. Trong quá trình UE giải mã HS-DSCH TTI, UE sẽ được kênh HS-SCCH cấp cho mã sử dụng trong HS-DSCH TTI và các thông tin kèm theo. Với đường lên,tín hiệu bao gồm ACK cho Hybrid ARQ và thông tin về điều kiện kênh truyền. Cơ chế HS-DPCCH được sử dụng cũng giống như DPCH [3].
HS-DSCH có nhiều loại tùy thuộc vào dung lượng của UE.
2.Mã hóa và điều chế thích nghi Adaptive Modulation and Coding (AMC):
Quá trình mã hóa và điều chế trong HSDPA thích nghi theo đường truyền. Khi UE gửi các đo đạc về đường truyền xuống trong luồng dữ liệu lên, Node-B tính toán và quyết định chọn phương thức mã hóa và điều chế nào phù hợp cho TTI. Nếu đường truyền xấu thì vẫn sử dụng Quadrature Phase Shift Keying (QPSK) như trong phiên bản 99 để đảm bảo chất lượng. Nếu đường truyền tốt thì có thể tăng số mức điều chế lên, ví dụ: 16 Quadrature Amplitude Modulation (16-QAM), nhằm tăng tốc độ. Đây là phần cải tiến trong phiên bản 5. Theo phiên bản 99, mọi quá trình đều do RNC điều khiển. Tuy nhiên như vậy sẽ làm tăng thời gian đáp ứng và giảm hiệu quả khi tính toán đối với kênh truyền thay đổi. Chính vì vậy trong phiên bản 5, các quá trình tính toán thời gian đã chuyển xuống cho Node-B đảm nhiệm.
3.Cơ chế lai yêu cầu truyền lại tự động Hybrid ARQ:
ARQ là cơ chế phát hiện lỗi như sau: bên phát gửi một gói tin và chờ bên nhận gửi xác nhận đã nhận được rồi gửi tiếp(Stop And Wait – SAW), nếu sau một khoảng thời gian không nhận được thì tự động gửi lại. Cơ chế Hybrid ARQ là sự kết hợp giữa ARQ và Forward Error Correction (FEC). Các gói sai được giữ lại để kết hợp với các gói truyền lại và giải mã. Có các loại: Code Combining, Incremental Redundancy (IR), Chase combining[3]. HSDPA sử dụng IR và Chase combining.

HSUPA:

Các sách thường viết rằng HSUPA được giới thiệu trong phiên bản 6 của 3GPP. Tuy nhiên, trong phiên bản 6 hầu như không thấy nhắc đến HSUPA. Nguyên nhân là do HSUPA là tên gọi thông thường, khi mới ra đời trong phiên bản 6 nó được biết đến với tên gọi Enhanced Uplink Dedicated Channel (E-DCH) .
Các kĩ thuật chính được nghiên cứu cho HSUPA:
  • AMC
  • Hybrid ARQ
  • Quá trình phân chia thời gian tại Node-B
  • Cải tiến các lớp trong kiến trúc phân lớp
  • Fast DCH
Sau một thời gian nghiên cứu thì một số kĩ thuật trên được coi là không khả thi và mang lại lợi nhuận nên chỉ có các kĩ thuật sau được áp dụng:
  • Giảm TTI: có khả năng 2ms
  • Cơ chế phân chia thời gian của Node-B: Node-B sẽ quản lí transport format combinations (TFCs) và UE sẽ chọn một TFC phù hợp [4].
  • HARQ: cơ chế yêu cầu truyền lại lai
Bên cạnh đó 3GPP cũng nghiên cứu ‘FDD enhanced uplink’ để áp dụng cho HSUPA và được chia làm các phần sau:
  • FDD Enhanced Uplink: lớp vật lí
  • FDD Enhanced Uplink: giao thức lớp 2 và lớp 3
  • FDD Enhanced Uplink: giao thức cho UTRAN Iub/Iur
  • FDD Enhanced Uplink: yêu cầu và kiểm tra chất lượng hệ thống, thu phát sóng vô tuyến[4].
Kĩ thuật TDD thì được nghiên cứu và áp dụng sau đó trong phiên bản 7.
  • FDD Enhanced Uplink: lớp vật lí gồm các nghiên cứu về các vấn đề sau:
    • Liên kết giữa kênh truyền và kênh vật lí
    • Mã hóa kênh và ghép kênh
    • Các thủ tục
    • Đo đạc các thông số
    • Dung lượng
  • FDD Enhanced Uplink: giao thức lớp 2 và lớp 3:


Để cải tiến đường truyền lên, người ta thay đổi các thủ tục trong mô hình phân lớp như sau:
    • Tại UE: một lớp MAC mới (MAC-es/MAC-e) được thêm vào dưới lớp MAC-d. MAC- es/MAC-e đảm nhận thực hiện việc truyền lại theo HARQ, phân định thời gian và MAC-e cũng thực hiện ghép kênh, chọn lựa TFC.
    • Tại Node B: tương tự để có thể giao tiếp giữa Node-B và UE thì tại Node-B một MAC-e cũng được thêm vào và thực hiện chức năng tương tự như tại UE: thực hiện việc truyền lại theo HARQ, phân định thời gian và tách kênh.
    • Tại S-RNC: tương ứng với lớp MAC-es tại UE thì S-RNC cũng được thêm vào lớp MAC-es để có thể đóng và mở các gói dữ liệu từ các Node-B trong quá trình chuyển giao mềm.
  • FDD Enhanced Uplink: giao thức cho UTRAN Iub/Iur
Đường lên cũng được cải tiến bằng cách thay đổi kịch bản giao tiếp UTRAN Iub/Iur:một UE thực hiện Soft Hand Over (SHO) với 2 Node-B và được quản lí bởi RNC.
FDD Enhanced Uplink: yêu cầu và kiểm tra chất lượng hệ thống, thu phát sóng vô tuyến.[4]
Để tăng chất lượng đường truyền người ta thực hiện các cải tiến ở các mặt sau:
    • Truyền nhận vô tuyến giữa các UE
    • Truyền nhận vô tuyến giữa các Base Station
    • Kiểm tra chất lượng các Base Station
    • Yêu cầu về quản lí tài nguyên vô tuyến

KẾT LUẬN:

Tóm lại, trong quá trình nghiên cứu hệ thống chuẩn của HSDPA và HSUPA, 3GPP đã đưa ra rất nhiều cải tiến nhằm tăng tốc độ truyền dẫn và đảm bảo chất lượng. Tuy nhiên, hệ thống chuẩn này rất chi tiết và phức tạp, nên trong bài viết này chỉ có thể trình bày các ý tưởng chính. Các thông tin chi tiết có thể được tải về từ trang chủ của 3GPP.

Xáo trộn làm trắng phổ (scrambing/whitening)

Phổ của tín hiệu băng gốc thường là chưa đồng đều, như tín hiệu thoại hơn 90% năng lượng tập trung ở tần số 0.3 -3.4 kHz. Mà các bộ khuếch đại thì có 2 nhược điểm là :
  • Hệ số khuếch đại không đồng đều (thường là P vào càng lớn thì tỉ số khuếch đại càng giảm)
  • Có giới hạn thôi
Để tín hiệu khuếch đại đồng đều và không bị quá tải ở đầu thu thì cần san cho nó phẳng phẳng một tí (P vào khác nhau thì K khuếch đại khác nhau nhưng P vào giống thì K phải giống mà).
Chức năng scrambing (ở các bộ scrambler) là làm phổ tín hiệu trở lên trắng hơn (whitening - tức là đồng đều hơn ấy).

Biện pháp này khá giống trải phổ (trải phổ trực tiếp nhé), tuy nhiên khi nhân với chuỗi giả ngẫu nhiên thì tốc độ chuỗi đó chỉ tương đương với tốc độ tín hiệu vào thôi. Trải phổ thì làm tín hiệu phẳng và băng rộng (trông rất dẹt và phẳng trên đồ thị biểu diễn phổ), còn cái này thì chỉ cho tín hiệu phẳng thôi.

Tác dụng chính :
- Phổ đồng đều -> tránh quá tải
- Tăng chuyển đổi cực tính -> đồng bộ đồng hồ
- Tăng tính bảo mật.

Mình chưa có dịp tìm hiểu nhiều về cái này nhưng theo mình nghĩ thì cái này ở những tín hiệu đường truyền không dùng trải phổ nhưng vẫn muốn một vài ưu thế của nó. Môn kỹ thuật truyền dẫn số cũng chủ yếu nói về thông tin hữu tuyến trong khi trải phổ thấy ở di động (cdma, w-cdma ...)


Tín hiệu băng gốc (Baseband)

Băng gốc (baseband) - là dải tần số từ 0 tới một tần số cực đại nào đó. Và có vô số dạng tín hiệu thỏa mãn điều này (chỉ trừ các tín hiệu đã được điều chế (modulation)).

Nói chung là theo mình hiểu, các tín hiệu bình thường là các tín hiệu băng gốc, gồm vô số tần số dải tần của nó là từ 0 đến 1 giá trị fmax nào đó. Thực ra thì như tín hiệu thoại, phổ tần của nó được coi là vô hạn nhưng để số hóa thì phải hạn băng lại xem thêm , Để truyền được tín hiệu thì cần điều chế tín hiệu, khi đó thì tín hiệu không còn là baseband nữa.

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Design by NewWpThemes | Blogger Theme by Lasantha - Premium Blogger Themes | New Blogger Themes